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What Are Model Objects?

In this section...

“Model Objects Represent Linear Systems” on page 1-3
“About Model Data” on page 1-3

Model Objects Represent Linear Systems

In Control System Toolbox™, System Identification Toolbox, and Robust Control
Toolbox™ software, you represent linear systems as model objects. In System
Identification Toolbox, you also represent nonlinear models as model objects. Model
objects are specialized data containers that encapsulate model data and other attributes
in a structured way. Model objects allow you to manipulate linear systems as single
entities rather than keeping track of multiple data vectors, matrices, or cell arrays.

Model objects can represent single-input, single-output (SISO) systems or multiple-input,
multiple-output (MIMO) systems. You can represent both continuous- and discrete-time
linear systems.

The main families of model objects are:

* Numeric Models — Basic representation of linear systems with fixed numerical
coefficients. This family also includes identified models that have coefficients
estimated with System Identification Toolbox software.

+ Generalized Models — Representations that combine numeric coefficients
with tunable or uncertain coefficients. Generalized models support tasks such as
parameter studies or compensator tuning.

About Model Data

The data encapsulated in your model object depends on the model type you use. For
example:
+ Transfer functions store the numerator and denominator coefficients

+ State-space models store the A, B, C, and D matrices that describe the dynamics of
the system

* PID controller models store the proportional, integral, and derivative gains
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Other model attributes stored as model data include time units, names for the model
inputs or outputs, and time delays.

Note: All model objects are MATLAB® objects, but working with them does not require

a background in object-oriented programming. To learn more about objects and object
syntax, see “Role of Classes in MATLAB” (MATLAB) in the MATLAB documentation.

More About
. “Types of Model Objects” on page 1-5
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Types of Model Objects

The following diagram illustrates the relationships between the types of model objects

in Control System Toolbox, Robust Control Toolbox, and System Identification Toolbox
software. Model types that begin with id require System Identification Toolbox software.
Model types that begin with u require Robust Control Toolbox software. All other model
types are available with Control System Toolbox software.
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Dynamic System Models vs. Static Models — In general, Dynamic System Models
represent systems that have internal dynamics, while Static Models represent static
input/output relationships.

Numeric Models vs. Generalized Models — Numeric Models are the basic
numeric representation of linear systems with fixed coefficients. Generalized Models
represent systems with tunable or uncertain components.

More About

“What Are Model Objects?” on page 1-3
“Dynamic System Models” on page 1-8
“Numeric Models” on page 1-10
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Dynamic System Models

Dynamic System Models generally represent systems that have internal dynamics or

memory of past states such as integrators, delays, transfer functions, and state-space
models.

Most commands for analyzing linear systems, such as bode, margin, and
linearSystemAnalyzer, work on most Dynamic System Model objects. For
Generalized Models, analysis commands use the current value of tunable parameters
and the nominal value of uncertain parameters. Commands that generate response plots
display random samples of uncertain models.

The following table lists the Dynamic System Models.

Model Family Model Types
Numeric LTI models — Basic numeric tf
representation of linear systems zpk
SS
frd
pid
pidstd
pid2
pidstd2
Identified LTI models — Representations |idtF
of linear systems with tunable coefficients, S
whose values can be identified using
measured input/output data. idfrd
idgrey
idpoly
idproc
Identified nonlinear models — idnlarx

Representations of nonlinear systems with idnihw
tunable coefficients, whose values can be

identified using input/output data. Limited |¥dnlgrey

1-8
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Model Family

Model Types

support for commands that analyze linear
systems.

Generalized LTI models — Representations
of systems that include tunable or

genss

. _ enfrd
uncertain coefficients E
uss
ufrd
Dynamic Control Design Blocks — tunableGain
Tu.nable, uncertaln,' or switch analysis el [CTTE
points for constructing models of control
systems tunableSS
tunablePID
tunablePID2
ultidyn
udyn
AnalysisPoint

More About

. “Numeric Linear Time Invariant (LTI) Models” on page 1-10

. “Identified LTI Models” on page 1-11

. “Identified Nonlinear Models” on page 1-11
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Numeric Models

Numeric Linear Time Invariant (LTl) Models

Numeric LTI models are the basic numeric representation of linear systems or
components of linear systems. Use numeric LTI models for modeling dynamic
components, such as transfer functions or state-space models, whose coefficients are
fixed, numeric values. You can use numeric LTI models for linear analysis or control
design tasks.

The following table summarizes the available types of numeric LTI models.

Model Type Description

tf Transfer function model in polynomial form

zpk Transfer function model in zero-pole-gain (factorized) form
Sss State-space model

frd Frequency response data model

pid Parallel-form PID controller

pidstd Standard-form PID controller

pid2 Parallel-form two-degree-of-freedom (2-DOF) PID controller
pidstd2 Standard-form 2-DOF PID controller

Creating Numeric LTI Models
For information about creating numeric LTI models, see:

*  “Transfer Functions” (Control System Toolbox)

+  “State-Space Models” (Control System Toolbox)

* “Frequency Response Data (FRD) Models” (Control System Toolbox)

* “Proportional-Integral-Derivative (PID) Controllers” (Control System Toolbox)

Applications of Numeric LTI Models

You can use Numeric LTI models to represent block diagram components such as plant
or sensor dynamics. By connecting Numeric LTI models together, you can derive Numeric

1-10




Numeric Models

LTI models of block diagrams. Use Numeric LTI models for most modeling, analysis, and
control design tasks, including:

Analyzing linear system dynamics using analysis commands such as bode, step, or
impulse.

Designing controllers for linear systems using the Control System Designer app or the
PID Tuner GUI (Control System Toolbox).

Designing controllers using control design commands such as pidtune, rlocus, or
Igr/lqg.

Identified LTI Models

Identified LTI Models represent linear systems with coefficients that are identified

using measured input/output data. You can specify initial values and constraints for the
estimation of the coefficients.

The following table summarizes the available types of identified LTI models.

Model Type Description

idtf Transfer function model in polynomial form, with
identifiable parameters

idss State-space model, with identifiable parameters

idpoly Polynomial input-output model, with identifiable
parameters

idproc Continuous-time process model, with identifiable
parameters

idfrd Frequency-response model, with identifiable parameters

idgrey Linear ODE (grey-box) model, with identifiable parameters

Identified Nonlinear Models

Identified Nonlinear Models represent nonlinear systems with coefficients that are
identified using measured input/output data. You can specify initial values and
constraints for the estimation of the coefficients.

The following table summarizes the available types of identified nonlinear models.
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Model Type Description

idnlarx Nonlinear ARX model, with identifiable
parameters

idnlgrey Nonlinear ODE (grey-box) model, with
identifiable parameters

idnlhw Hammerstein-Wiener model, with

identifiable parameters
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About Identified Linear Models

In this section...
“What are IDLTI Models?” on page 1-13

“Measured and Noise Component Parameterizations” on page 1-14

“Linear Model Estimation” on page 1-17

What are IDLTI Models?

System Identification Toolbox software uses objects to represent a variety of linear
and nonlinear model structures. These linear model objects are collectively known as
Identified Linear Time-Invariant (IDLTT) models.

IDLTT models contain two distinct dynamic components:

* Measured component — Describes the relationship between the measured inputs
and the measured output (G)

+ Noise component — Describes the relationship between the disturbances at the
output and the measured output (H)

Models that only have the noise component H are called time-series or signal models.
Typically, you create such models using time-series data that consist of one or more
outputs y(t) with no corresponding input.

The total output is the sum of the contributions from the measured inputs and the
disturbances: y = G u + H e, where u represents the measured inputs and e the
disturbance. e(t) is modeled as zero-mean Gaussian white noise with variance A. The
following figure illustrates an IDLTI model.

*e

IDLTI
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When you simulate an IDLTI model, you study the effect of input u(#) (and possibly
initial conditions) on the output y(z). The noise e(%) is not considered. However, with
finite-horizon prediction of the output, both the measured and the noise components of
the model contribute towards computation of the (predicted) response.

v H'G
y_measured A1
— 1-H

y_predicted

—

One-step ahead prediction model corresponding to a linear identified model (y = Gu+He)

Measured and Noise Component Parameterizations

The various linear model structures provide different ways of parameterizing the

transfer functions G and H. When you construct an IDLTI model or estimate a model
directly using input-output data, you can configure the structure of both G and H, as
described in the following table:

Model Type |Transfer Functions G and H Configuration Method

State space |Represents an identified state-space Construction: Use 1dSs to create a model,
model model structure, governed by the specifying values of state-space matrices
(idss) equations: A, B, C, D and K as input arguments

x=Ax+Bu+Ke
y=Cx+Du+e

where the transfer function between
the measured input z and output

yis G(s)=C(sI —A)"'B+D and
the noise transfer function is
H(s)=C(sI-A)'K+1.

(using NaNs to denote unknown entries).

Estimation: Use ssest or n4sid,
specifying name-value pairs for various
configurations, such as, canonical
parameterization of the measured
dynamics ("Form®/"canonical "),
denoting absence of feedthrough by fixing
D to zero ("Feedthrough®/false), and
absence of noise dynamics by fixing K to
zero ("DisturbanceModel "/ "none").
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Model Type

Transfer Functions G and H

Configuration Method

Polynomial
model

Represents a polynomial model such
as ARX, ARMAX and BJ. An ARMAX

Construction: Use idpoly to create a
model using values of active polynomials

(idpoly) model, for example, uses the input-output |as input arguments. For example, to
equation Ay(t) = Bu(t)+Ce(t), so that create an Output-Error model which uses
the measured transfer function G is G = B/F as the measured component and
G(s)= A'B ikt tihe ot el has a trivial noise component (H = 1).

) enter:

function is H(s) = A™"C. y = idpoly([1.B.00.0.5

The AR MAX model is a special . Estimation: Use the armax, arx, or bj,

apigursition of tie general p(.)lyn'omlal specifying the orders of the polynomials

model whose governing equation is: as input arguments, For example, bj
requires you to specify the orders of the

Ay(®) = Eu(t) +£e(t) B, C, D, and F polynomials to construct a
F D model with governing equation

The autoregressive component, A, is B C

common between the measured and noise (o) = Fu(t) + Be(t)

components. The polynomials B and F

constitute the measured component while

the polynomials C and D constitute the

noise component.

Transfer Represents an identified transfer function | Construction: Use idtF to create

function model, which has no dynamic elements a model, specifying values of the

model to model noise behavior. This object uses |numerator and denominator coefficients

(idtf) the trivial noise model H(s) = I. The as input arguments. The numerator

governing equation is

num

y(t) = 7 u(t)+e(t)

en

and denominator vectors constitute the
measured component G = num(s)/
den(s). The noise component is fixed to H
= 1.

Estimation: Use tfest, specifying the
number of poles and zeros of the measured
component G.

1-15



1 Choosing Your System Identification Approach

Model Type

Transfer Functions G and H

Configuration Method

Process
model
(idproc)

1-16

Represents a process model, which
provides options to represent the noise
dynamics as either first- or second-

order ARMA process (that is, H(s)=
C(s)/A(s), where C(s) and A(s) are

monic polynomials of equal degree). The
measured component, G(s), is represented
by a transfer function expressed in pole-
zero form.

For process (and grey-box) models,

the noise component is often treated

as an on-demand extension to an
otherwise measured component-centric
representation. For these models, you
can add a noise component by using the
DisturbanceModel estimation option.
For example:

model = procest(data, "P1D")

estimates a model whose equation 1is:

1 —sTd

y(s) :Kp me u(3)+€(3).

To add a second order noise component to
the model, use:

Options = procestOptions(“Disturbance
model = procest(data, “P1D”,0ptions);

This model has the equation:

1
1 _STdu(S)+ +cqs o

(s) =K, ————e
Y P (Tprs+1) 1+dys

where the coefficients cI and d1
parameterize the noise component of the
model. If you are constructing a process
model using the idproc command, specify
the structure of the measured component
using the Type input argument and the
noise component by using the NoiseTF
name-value pair. For example,

model = idproc("P1","Kp*®,1,"Tpl",1,"N
[1 0.51))

odel”, “AR

s)

oiseTF",st
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Model Type |Transfer Functions G and H Configuration Method

creates the process model y(s) = 1/(s+1)
u(s) +(s+0.1)/(s +0.5) e(s)

Sometimes, fixing coefficients or specifying bounds on the parameters are not sufficient.
For example, you may have unrelated parameter dependencies in the model or
parameters may be a function of a different set of parameters that you want to identify
exclusively. For example, in a mass-spring-damper system, the A and B parameters
both depend on the mass of the system. To achieve such parameterization of linear
models, you can use grey-box modeling where you establish the link between the actual
parameters and model coefficients by writing an ODE file. To learn more, see “Grey-Box
Model Estimation”.

Linear Model Estimation

You typically use estimation to create models in System Identification Toolbox. You
execute one of the estimation commands, specifying as input arguments the measured
data, along with other inputs necessary to define the structure of a model. To illustrate,
the following example uses the state-space estimation command, Ssest, to create a state
space model. The first input argument data specifies the measured input-output data.
The second input argument specifies the order of the model.

sys = ssest(data,4)

The estimation function treats the noise variable e(z) as prediction error — the
residual portion of the output that cannot be attributed to the measured inputs. All
estimation algorithms work to minimize a weighted norm of e() over the span of
available measurements. The weighting function is defined by the nature of the noise
transfer function H and the focus of estimation, such as simulation or prediction error
minimization.

+ “Black Box (“Cold Start”) Estimation” on page 1-17

+  “Structured Estimations” on page 1-18

+ “Estimation Options” on page 1-19
Black Box (“Cold Start”) Estimation
In a black-box estimation, you only have to specify the order to configure the structure of

the model.
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sys = estimator(data,orders)

where estimator is the name of an estimation command to use for the desired model
type.

For example, you use tfest to estimate transfer function models, arx for ARX-structure
polynomial models, and procest for process models.

The first argument, data, is time- or frequency domain data represented as an iddata
or idfrd object. The second argument, orders, represents one or more numbers whose
definitions depends upon the model type:

*  For transfer functions, orders refers to the number of poles and zeros.
+ For state-space models, orders refers to the number of states.

+  For process models, orders denotes the structural elements of a process model, such
as, the number of poles and presence of delay and integrator.

When working with the app, you specify the orders in the appropriate edit fields of
corresponding model estimation dialogs.

Structured Estimations

In some situations, you want to configure the structure of the desired model more closely
than what is achieved by simply specifying the orders. In such cases, you construct a
template model and configure its properties. You then pass that template model as an
input argument to the estimation commands in place of orders.

To illustrate, the following example assigns initial guess values to the numerator and the
denominator polynomials of a transfer function model, imposes minimum and maximum
bounds on their estimated values, and then passes the object to the estimator function.

% Initial guess for numerator

num = [1 2];

den = [1 2 1 1];

% Initial guess for the denominator

sys = idtf(num,den);

% Set min bound on den coefficients to 0.1
sys.Structure.Denominator _Minimum = [1 0.1 0.1 0.1];
sysEstimated = tfest(data,sys);

The estimation algorithm uses the provided initial guesses to kick-start the estimation
and delivers a model that respects the specified bounds.
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You can use such a model template to also configure auxiliary model properties such
as input/output names and units. If the values of some of the model’s parameters are
initially unknown, you can use NaNs for them in the template.

Estimation Options

There are many options associated with a model’s estimation algorithm that
configure the estimation objective function, initial conditions and numerical search
algorithm, among other things. For every estimation command, estimator, there
is a corresponding option command named estimatorOptions. To specify options
for a particular estimator command, such as tfest, use the options command that
corresponds to the estimation command, in this case, tFestOptions. The options
command returns an options set that you then pass as an input argument to the
corresponding estimation command.

For example, to estimate an Output-Error structure polynomial model, you use oe.
To specify simulation as the focus and Isgnonlin as the search method, you use
oeOptions:

load iddatal z1
Options = oeOptions("Focus”,"simulation”, "SearchMethod”, " Isgnonlin®);
sys= oe(zl,[2 2 1],0ptions);

Information about the options used to create an estimated model is stored in the
OptionsUsed field of the model’s Report property. For more information, see
“Estimation Report” on page 1-28.

More About

. “Types of Model Objects” on page 1-5
. “Available Linear Models” on page 1-25
. “About Identified Nonlinear Models” on page 11-2
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Linear Model Structures

1-20

In this section...
“About System Identification Toolbox Model Objects” on page 1-20
“When to Construct a Model Structure Independently of Estimation” on page 1-21

“Commands for Constructing Linear Model Structures” on page 1-21
“Model Properties” on page 1-22
“See Also” on page 1-24

About System Identification Toolbox Model Objects

Objects are instances of model classes. Each class is a blueprint that defines the following
information about your model:

*  How the object stores data

*  Which operations you can perform on the object

This toolbox includes nine classes for representing models. For example, idss represents
linear state-space models and idnlarx represents nonlinear ARX models. For a
complete list of available model objects, see “Available Linear Models” on page 1-25

and “Available Nonlinear Models” on page 11-12.

Model properties define how a model object stores information. Model objects store
information about a model, such as the mathematical form of a model, names of input
and output channels, units, names and values of estimated parameters, parameter
uncertainties, and estimation report. For example, an 1dss model has an InputName
property for storing one or more input channel names.

The allowed operations on an object are called methods. In System Identification Toolbox
software, some methods have the same name but apply to multiple model objects. For
example, step creates a step response plot for all dynamic system objects. However,
other methods are unique to a specific model object. For example, canon is unique to
state-space 1dss models and linearize to nonlinear black-box models.

Every class has a special method, called the constructor, for creating objects of that class.
Using a constructor creates an instance of the corresponding class or instantiates the
object. The constructor name is the same as the class name. For example, idss and
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idnlarx are both the name of the class and the name of the constructor for instantiating
the linear state-space models and nonlinear ARX models, respectively.

When to Construct a Model Structure Independently of Estimation

You use model constructors to create a model object at the command line by specifying all
required model properties explicitly.

You must construct the model object independently of estimation when you want to:

* Simulate or analyze the effect of model parameters on its response, independent of
estimation.

* Specify an initial guess for specific model parameter values before estimation. You
can specify bounds on parameter values, or set up the auxiliary model information
in advance, or both. Auxiliary model information includes specifying input/output
names, units, notes, user data, and so on.

In most cases, you can use the estimation commands to both construct and estimate

the model—without having to construct the model object independently. For example,

the estimation command tfest creates a transfer function model using data and the
number of poles and zeros of the model. Similarly, nlarx creates a nonlinear ARX model
using data and model orders and delays that define the regressor configuration. For
information about how to both construct and estimate models with a single command, see
“Model Estimation Commands” on page 1-42.

In case of grey-box models, you must always construct the model object first and then
estimate the parameters of the ordinary differential or difference equation.

Commands for Constructing Linear Model Structures

The following table summarizes the model constructors available in the System
Identification Toolbox product for representing various types of linear models.

After model estimation, you can recognize the corresponding model objects in the
MATLAB Workspace browser by their class names. The name of the constructor matches
the name of the object it creates.

For information about how to both construct and estimate models with a single

command, see “Model Estimation Commands” on page 1-42.
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Summary of Model Constructors

Model Constructor Resulting Model Class

idfrd Nonparametric frequency-response model.

idproc Continuous-time, low-order transfer functions (process
models).

idpoly Linear input-output polynomial models:
+ ARX
+ ARMAX

Output-Error

+  Box-Jenkins

idss Linear state-space models.
idtf Linear transfer function models.
idgrey Linear ordinary differential or difference equations

(grey-box models). You write a function that translates
user parameters to state-space matrices. Can also

be viewed as state-space models with user-specified
parameterization.

For more information about when to use these commands, see “When to Construct a
Model Structure Independently of Estimation” on page 1-21.

Model Properties

+  “Categories of Model Properties” on page 1-22

+ “Viewing Model Properties and Estimated Parameters” on page 1-23
Categories of Model Properties

The way a model object stores information is defined by the properties of the
corresponding model class.

Each model object has properties for storing information that are relevant only to that
specific model type. The 1dtF, idgrey, idpoly, idproc, and idss model objects are
based on the 1dlti superclass and inherit all idlti properties.

In general, all model objects have properties that belong to the following categories:
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* Names of input and output channels, such as InputName and OutputName

+  Sample time of the model, such as Ts

+  Units for time or frequency

*  Model order and mathematical structure (for example, ODE or nonlinearities)
* Properties that store estimation results (Report)

* User comments, such as Notes and Userdata

For information about getting help on object properties, see the model reference pages.
Viewing Model Properties and Estimated Parameters

The following table summarizes the commands for viewing and changing model property

values. Property names are not case sensitive. You do not need to type the entire
property name if the first few letters uniquely identify the property.

Task Command Example
View all model get Load sample data, compute an ARX model, and
properties and list the model properties:

their values
load iddata8s

m_arx=arx(z8,[4 3 2 3 0 0 0]);

get(m_arx)
Access a specific |Use dot notation View the A matrix containing the estimated
model property parameters in the previous model:
m_arx.A
For properties, such as View the method used in ARX model estimation:

Report, that are configured
like structures, use dot
notation of the form

model .PropertyName.Fiel
FieldName is the name of
any field of the property.

m_arx.Report.Method

Change model dot notation Change the input delays for all three input
property values channels to [1 1 1] for an ARX model:

m_arx.InputDelay = [1 1 1]
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Task

Command

Example

Access model
parameter values
and uncertainty

Use getpar, getpvec and
getcov
See Also: polydata,

* View a table of all parameter attributes:

getpar(m_arx)

property values
and uncertainty
information

setcov

information idssdata, tfdata, * View the A polynomial and 1 standard
zpkdata uncertainty of an ARX model:
[a,~,~,~,~,da] = polydata(m_arx)
Set model Use setpar, setpvec and |* Set default parameter labels:

m_arx = setpar(m_arx, " label”,“default®)

+ Set parameter covariance data:
m_arx = setcov(m_arx,cov)

Get number of
parameters

Use nparams

Get the number of parameters:

nparams(sys)

See Also

Validate each model directly after estimation to help fine-tune your modeling strategy.
When you do not achieve a satisfactory model, you can try a different model structure
and order, or try another identification algorithm. For more information about validating
and troubleshooting models, see “Validating Models After Estimation” on page 17-3.
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Available Linear Models

A linear model is often sufficient to accurately describe the system dynamics and, in
most cases, you should first try to fit linear models. Available linear structures include
transfer functions and state-space models, summarized in the following table.

Model Type

Usage

Learn More

Transfer function (idtf)

Use this structure to
represent transfer
functions:

where num and den are
polynomials of arbitrary
lengths. You can specify
initial guesses for, and
estimate, num, den, and
transport delays.

“Transfer Function Models”

Process model (idproc)

Use this structure to
represent process models
that are low order transfer

functions expressed in pole-

zero form. They include
integrator, delay, zero, and
up to 3 poles.

“Process Models”

State-space model (idss)

Use this structure to
represent known state-
space structures and black-
box structures. You can

fix certain parameters to
known values and estimate
the remaining parameters.
You can also prescribe
minimum/maximum
bounds on the values

of the free parameters.

“State-Space Models”
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Model Type

Usage

Learn More

If you need to specify
parameter dependencies

or parameterize the state-
space matrices using your
own parameters, use a grey-
box model.

Polynomial models
(idpoly)

Use to represent linear
transfer functions based
on the general form input-
output polynomial form:

Ay=—u+—
YEFYT D

where A, B, C, D and F

are polynomials with
coefficients that the toolbox
estimates from data.

Typically, you begin
modeling using simpler
forms of this generalized
structure (such as

ARX: Ay = Bu+e and

OE: yz%u +e) and, if

necessary, increase the
model complexity.

“Input-Output Polynomial
Models”




Available Linear Models

Model Type Usage Learn More

Grey-box model (idgrey) Use to represent arbitrary |“Linear Grey-Box Models”
parameterizations of
state-space models. For
example, you can use this
structure to represent your
ordinary differential or
difference equation (ODE)
and to define parameter
dependencies.

More About

. “Linear Model Structures” on page 1-20
. “About Identified Linear Models” on page 1-13
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Estimation Report

In this section...

“What is an Estimation Report?” on page 1-28

“Access Estimation Report” on page 1-29

“Compare Estimated Models Using Estimation Report” on page 1-30

“Analyze and Refine Estimation Results Using Estimation Report” on page 1-31

What is an Estimation Report?

The estimation report contains information about the results and options used for a
model estimation. This report is stored in the Report property of the estimated model.
The exact contents of the report depend on the estimator function you use to obtain the
model.

Specifically, the estimation report has the following information:

* Status of the model — whether the model is constructed or estimated
*  How the initial conditions are handled during estimation
* Termination conditions for iterative estimation algorithms

* Final prediction error (FPE), percent fit to estimation data, and mean-square error
(MSE)

*  Raw, normalized, and small sample-size corrected Akaike Information Criteria (AIC)
and Bayesian Information Criterion (BIC)

* Type and properties of the estimation data

+ All estimated quantities — parameter values, initial states for state-space and grey-
box models, and their covariances

* The option set used for configuring the estimation algorithm

To learn more about the report produced for a specific estimator, see the corresponding
reference page.

You can use the report to:

* Keep an estimation log, such as the data, default and other settings used, and
estimated results such as parameter values, initial conditions, and fit. See “Access
Estimation Report” on page 1-29.
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+  Compare options or results of separate estimations. See “Compare Estimated Models
Using Estimation Report” on page 1-30.

+  Configure another estimation using the previously specified options. See “Analyze and
Refine Estimation Results Using Estimation Report” on page 1-31.

Access Estimation Report
This example shows how to access the estimation report.

The estimation report keeps a log of information such as the data used, default and other
settings used, and estimated results such as parameter values, initial conditions, and fit.

After you estimate a model, use dot notation to access the estimation report. For
example:

load iddatal z1;

np = 2;

sys = tfest(zl,np);
Sys_report = sys.Report

Sys_report =

Status: "Estimated using TFEST®
Method: "TFEST"
InitMethod: "IV*®
NdWeight: "Not applicable*
N4Horizon: "Not applicable*®
InitialCondition: “"estimate”
Fit: [1x1 struct]
Parameters: [1x1 struct]
OptionsUsed: [1x1 idoptions.tfest]
RandState: []
DataUsed: [1x1 struct]
Termination: [1x1 struct]

Explore the options used during the estimation.
sys.Report.OptionsUsed

Option set for the tfest command:

InitMethod: "iv*"
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InitOption:
InitialCondition:
Display:
InputOffset:
OutputOffset:
EstCovar:
Regularization:
SearchMethod:
SearchOption:
WeightingFilter:
EnforceStability:
OutputWeight:
Advanced:

[1x1 struct]
"auto”

"off*

[l

[1

1

[1x1 struct]
"auto”
[1x1 §doptions.search.identsolver]

L
0

L1
[1x1 struct]

View the fit of the transfer function model with the estimation data.

sys.Report.Fit

ans =

struct with fields:

FitPercent: 70.7720
LossFcn: 1.6575
MSE: 1.6575
FPE: 1.7252

AIC: 1.0150e+03

AlCc: 1.0153e+03
nAIC: 0.5453

BIC: 1.0372e+03

Compare Estimated Models Using Estimation Report

This example shows how to compare multiple estimated models using the estimation
report.

Load estimation data.

load iddatal z1;

Estimate a transfer function model.
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np = 2;
sys_tf = tfest(zl,np);

Estimate a state-space model.

sys_ss = ssest(zl,2);

Estimate an ARX model.

sys_arx = arx(zl, [2 2 1]);

Compare the percentage fit of the estimated models to the estimation data.
fit_tf = sys tf_Report.Fit.FitPercent

fit_ss = sys_ss.Report.Fit.FitPercent
fit_arx = sys_arx.Report.Fit.FitPercent

fit_tf =

70.7720

fit ss =

76.3808

fit arx =
68.7220

The comparison shows that the state-space model provides the best percent fit to the
data.

Analyze and Refine Estimation Results Using Estimation Report

This example shows how to analyze an estimation and configure another estimation
using the estimation report.

Estimate a state-space model that minimizes the 1-step ahead prediction error.

load(fullfile(matlabroot, "toolbox", "ident”, "iddemos”, "data”, "mrdamper.mat®));
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z = iddata(F,V,Ts);

opt = ssestOptions;
opt.Focus = "prediction”;
opt.Display = "on”";

sysl = ssest(z,2,o0pt);

sysl1 has good 1-step prediction ability as indicated by >90% fit of the prediction results
to the data.

Use compare(z,sysl) to check the model's ability to simulate the measured output F
using the input V. The model's simulated response has only 45% fit to the data.

Perform another estimation where you retain the original options used for sysl except
that you change the focus to minimize the simulation error.

Fetch the options used by sys1 stored in its Report property. This approach is useful
when you have saved the estimated model but not the corresponding option set used for
the estimation.

opt2 = sysl.Report.OptionsUsed;
Change the focus to simulation and re-estimate the model.

opt2.Focus = “simulation”;
sys2 = ssest(z,sysl,opt2);

Compare the simulated response to the estimation data using compare(z,sysl,sys2).
The fit improves to 53%.

More About
. “About Identified Linear Models” on page 1-13
. “About Identified Nonlinear Models” on page 11-2
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Imposing Constraints on Model Parameter Values

All identified linear (IDLTT) models, except 1dfrd, contain a Structure property. The
Structure property contains the adjustable entities (parameters) of the model. Each
parameter has attributes such as value, minimum/maximum bounds, and free/fixed
status that allow you to constrain them to desired values or a range of values during
estimation. You use the Structure property to impose constraints on the values of
various model parameters.

The Structure property contains the essential parameters that define the structure of a
given model:

+ For identified transfer functions, includes the numerator, denominator, and delay
parameters
* For polynomial models, includes the list of active polynomials

+  For state-space models, includes the list of state-space matrices
For information about other model types, see the model reference pages.

For example, the following example constructs an idtf model, specifying values for the
Numerator and Denominator parameters:

num = [1 2];
den = [1 2 2];
sys = idtf(num,den)

You can update the value of the Numerator and Denominator properties after you
create the object as follows:

new_den = [1 1 10];
sys.Denominator = new_den;

To fix the denominator to the value you specified (treat its coefficients as fixed
parameters), use the Structure property of the object as follows:

sys.Structure.Denominator.Value = new_den;
sys.Structure.Denominator.Free = false(1,3);

For a transfer function model, the Numerator, Denominator, and 10Delay model
properties are simply pointers to the Value attribute of the corresponding parameter in
the Structure property.
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IDTF Model Properties

num
den

ioDelay

Parameters

double vector
double vector\

scalar

e numi

Value:
Minimum:
Maximum:
Free:
Scale:
Info:

Structure

InputDelay

Ts

Similar relationships exist for other model structures. For example, the A property of a
state-space model contains the double value of the state matrix. It is an alias to the A

scalar

scalar

den:
Value:
Minimum:
Maximum:
Free:
Scale:
Info:

ioDelay:
Value:
Minimum:
Maximum:
Free:

Scale:
Info:

double vector
double vector
double vector
logical vector

double vector
struct

parameter value stored in Structure.A.Value.
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Recommended Model Estimation Sequence

System identification is an iterative process, where you identify models with different
structures from data and compare model performance. You start by estimating the
parameters of simple model structures. If the model performance is poor, you gradually
increase the complexity of the model structure. Ultimately, you choose the simplest
model that best describes the dynamics of your system.

Another reason to start with simple model structures is that higher-order models are
not always more accurate. Increasing model complexity increases the uncertainties in
parameter estimates and typically requires more data (which is common in the case of
nonlinear models).

Note: Model structure is not the only factor that determines model accuracy. If your
model is poor, you might need to preprocess your data by removing outliers or filtering
noise. For more information, see “Ways to Prepare Data for System Identification” on
page 2-6.

Estimate impulse-response and frequency-response models first to gain insight into the
system dynamics and assess whether a linear model is sufficient. For more information,
see “Correlation Models” and “Frequency-Response Models”. Then, estimate parametric
models in the following order:

1 Transfer function, ARX polynomial, and state-space models provide the simplest
structures. Estimation of ARX and state-space models let you determine the model
orders.

In the System Identification app. Choose to estimate the Transfer function
models, ARX polynomial models, and the state-space model using the n4sid method.

At the command line. Use the tfest, arx, and the n4sid commands,
respectively.

For more information, see “Input-Output Polynomial Models” and “State-Space
Models”.

2 ARMAX and BdJ polynomial models provide more complex structures and require
iterative estimation. Try several model orders and keep the model orders as low as
possible.
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In the System Identification app. Select to estimate the BJ and ARMAX
polynomial models.

At the command line. Use the bj or armax commands.

For more information, see “Input-Output Polynomial Models”.

3 Nonlinear ARX or Hammerstein-Wiener models provide nonlinear structures. For
p
more information, see “Nonlinear Model Identification”.

For general information about choosing you model strategy, see “System Identification
Overview”. For information about validating models, see “Validating Models After
Estimation” on page 17-3.
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Supported Models for Time- and Frequency-Domain Data

In this section...

“Supported Models for Time-Domain Data” on page 1-37
“Supported Models for Frequency-Domain Data” on page 1-38

“See Also” on page 1-39

Supported Models for Time-Domain Data
Continuous-Time Models

You can directly estimate the following types of continuous-time models:

* Transfer function models.
*  Process models.

+ State-space models.

You can also use d2c to convert an estimated discrete-time model into a continuous-time
model.

Discrete-Time Models
You can estimate all linear and nonlinear models supported by the System Identification

Toolbox product as discrete-time models, except process models, which are defined only in
continuous-time..

ODEs (Grey-Box Models)

You can estimate both continuous-time and discrete-time models from time-domain data
for linear and nonlinear differential and difference equations.

Nonlinear Models

You can estimate discrete-time Hammerstein-Wiener and nonlinear ARX models from
time-domain data.

You can also estimate nonlinear grey-box models from time-domain data. See “Estimate
Nonlinear Grey-Box Models” on page 13-34.
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Supported Models for Frequency-Domain Data
There are two types of frequency-domain data:

*  Frequency response data

*  Frequency domain input/output signals which are Fourier Transforms of the
corresponding time domain signals.

The data is considered continuous-time if its sample time (TS) is 0, and is considered
discrete-time if the sample time is nonzero.

Continuous-Time Models
You can estimate the following types of continuous-time models directly:

+ Transfer function models using continuous- or discrete-time data.

*  Process models using continuous- or discrete-time data.

+ Input-output polynomial models of output-error structure using continuous time data.
* State-space models using continuous- or discrete-time data.

From continuous-time frequency-domain data, you can only estimate continuous-time
models.

You can also use d2c to convert an estimated discrete-time model into a continuous-time
model.

Discrete-Time Models

You can estimate all linear model types supported by the System Identification Toolbox
product as discrete-time models, except process models, which are defined in continuous-
time only. For estimation of discrete-time models, you must use discrete-time data.

The noise component of a model cannot be estimated using frequency domain data,
except for ARX models. Thus, the K matrix of an identified state-space model, the
noise component, is zero. An identified polynomial model has output-error (OE) or ARX
structure; BJJ/ARMAX or other polynomial structure with nontrivial values of C or D
polynomials cannot be estimated.

ODEs (Grey-Box Models)

For linear grey-box models, you can estimate both continuous-time and discrete-time
models from frequency-domain data. The noise component of the model, the K matrix,
cannot be estimated using frequency domain data; it remains fixed to O.



Supported Models for Time- and Frequency-Domain Data

Nonlinear grey-box models are supported only for time-domain data.
Nonlinear Black-Box Models

Nonlinear black box (nonlinear ARX and Hammerstein-Wiener models) cannot be
estimated using frequency domain data.

See Also

“Supported Continuous- and Discrete-Time Models” on page 1-40
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Supported Continuous- and Discrete-Time Models

For linear and nonlinear ODEs (grey-box models), you can specify any ordinary
differential or difference equation to represent your continuous-time or discrete-time
model in state-space form, respectively. In the linear case, both time-domain and
frequency-domain data are supported. In the nonlinear case, only time-domain data is
supported.

For black-box models, the following tables summarize supported continuous-time and
discrete-time models.

Supported Continuous-Time Models

Model Type Description

Transfer function models Estimate continuous-time transfer function models directly
using tfest from either time- and frequency-domain data.
If you estimated a discrete-time transfer function model
from time-domain data, then use d2c to transform it into a
continuous-time model.

Low-order transfer functions Estimate low-order process models for up to three free poles

(process models) from either time- or frequency-domain data.

Linear input-output polynomial To get a linear, continuous-time model of arbitrary structure

models from time-domain data, you can estimate a discrete-time
model, and then use d2c to transform it into a continuous-time
model.

You can estimate only polynomial models of Output Error
structure using continuous-time frequency domain data..
Other structures that include noise models, such as Box-
Jenkins (BJ) and ARMAX, are not supported for frequency-
domain data.

State-space models Estimate continuous-time state-space models directly using
the estimation commands from either time- and frequency-
domain data.

If you estimated a discrete-time state-space model from time-
domain data, then use d2c to transform it into a continuous-
time model.
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Model Type

Description

Linear ODEs (grey-box) models

If the MATLAB file returns continuous-time model matrices,
then estimate the ordinary differential equation (ODE)
coefficients using either time- or frequency-domain data.

Nonlinear ODEs (grey-box) models

If the MATLAB file returns continuous-time output and state
derivative values, estimate arbitrary differential equations
(ODEs) from time-domain data.

Supported Discrete-Time Models

Model Type

Description

Linear input-output polynomial
models

Estimate arbitrary-order, linear parametric models from time-
or frequency-domain data.

To get a discrete-time model, your data sample time must

be set to the (nonzero) value you used to sample in your
experiment.

“Nonlinear Model Identification”

Estimate from time-domain data only.

Linear ODEs (grey-box) models

If the MATLAB file returns discrete-time model matrices, then
estimate ordinary difference equation coefficients from time-
domain or discrete-time frequency-domain data.

Nonlinear ODEs (grey-box) models

If the MATLAB file returns discrete-time output and state
update values, estimate ordinary difference equations from
time-domain data.
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Model Estimation Commands

In most cases, a model can be created by using a model estimation command on a
dataset. For example, ssest(data,nx) creates a continuous-time state-space model of
order Nx using the input/output of frequency response data DATA.

Note: For ODEs (grey-box models), you must first construct the model structure and then
apply an estimation command (either greyest or pem) to the resulting model object.

The following table summarizes System Identification Toolbox estimation commands. For
detailed information about using each command, see the corresponding reference page.

Commands for Constructing and Estimating Models

Model Type Estimation Commands
Transfer function models tfest
Process models procest
Linear input-output polynomial |armax (ARMAX only)
models arx (ARX only)

bj (BJ only)

iv4 (ARX only)

oe (OE only)
polyest (for all models)

State-space models n4sid
ssest
Time-series models ar
arx (for multiple outputs)
ivar
nlarx(for nonlinear time-series models)
Nonlinear ARX models nlarx
Hammerstein-Wiener models nlhw
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Modeling Multiple-Output Systems

In this section...
“About Modeling Multiple-Output Systems” on page 1-43
“Modeling Multiple Outputs Directly” on page 1-44

“Modeling Multiple Outputs as a Combination of Single-Output Models” on page
1-44

“Improving Multiple-Output Estimation Results by Weighing Outputs During
Estimation” on page 1-44

About Modeling Multiple-Output Systems

You can estimate multiple-output model directly using all the measured inputs and
outputs, or you can try building models for subsets of the most important input and
output channels. To learn more about each approach, see:

+ “Modeling Multiple Outputs Directly” on page 1-44

* “Modeling Multiple Outputs as a Combination of Single-Output Models” on page
1-44

Modeling multiple-output systems is more challenging because input/output couplings
require additional parameters to obtain a good fit and involve more complex models.

In general, a model is better when more data inputs are included during modeling.
Including more outputs typically leads to worse simulation results because it is harder to
reproduce the behavior of several outputs simultaneously.

If you know that some of the outputs have poor accuracy and should be less important
during estimation, you can control how much each output is weighed in the estimation.
For more information, see “Improving Multiple-Output Estimation Results by Weighing
Outputs During Estimation” on page 1-44.
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Modeling Multiple Outputs Directly

You can perform estimation with linear and nonlinear models for multiple-output data.

Tip: Estimating multiple-output state-space models directly generally produces better
results than estimating other types of multiple-output models directly.

Modeling Multiple Outputs as a Combination of Single-Output Models

You may find that it is harder for a single model to explain the behavior of several
outputs. If you get a poor fit estimating a multiple-output model directly, you can try
building models for subsets of the most important input and output channels.

Use this approach when no feedback is present in the dynamic system and there are no
couplings between the outputs. If you are unsure about the presence of feedback, see
“How to Analyze Data Using the advice Command” on page 2-100.

To construct partial models, use subreferencing to create partial data sets, such that each
data set contains all inputs and one output. For more information about creating partial
data sets, see the following topics:

+  For working in the System Identification app, see “Create Data Sets from a Subset of
Signal Channels” on page 2-33.

*  For working at the command line, see the “Select Data Channels, I/O Data and
Experiments in iddata Objects” on page 2-55.

After validating the single-output models, use vertical concatenation to combine

these partial models into a single multiple-output model. For more information about
concatenation, see “Increasing Number of Channels or Data Points of iddata Objects” on
page 2-58 or “Adding Input or Output Channels in idfrd Objects” on page 2-86.

You can try refining the concatenated multiple-output model using the original (multiple-
output) data set.

Improving Multiple-Output Estimation Results by Weighing Outputs
During Estimation

When estimating linear and nonlinear black-box models for multiple-output systems, you
can control the relative importance of output channels during the estimation process.
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The ability to control how much each output is weighed during estimation is useful when
some of the measured outputs have poor accuracy or should be treated as less important
during estimation. For example, if you have already modeled one output well, you might
want to focus the estimation on modeling the remaining outputs. Similarly, you might
want to refine a model for a subset of outputs.

Use the OutputWeight estimation option to indicate the desired output weighting.
If you set this option to "noise”, an automatic weighting, equal to the inverse of the
estimated noise variance, is used for model estimation. You can also specify a custom
weighting matrix, which must be a positive semi-definite matrix.

Note:

*  The OutputWeight option is not available for polynomial models, except ARX
models, since their estimation algorithm estimates the parameters one output at a
time.

* Transfer function (idtf) and process models (idproc) ignore OutputWeight
when they contain nonzero or free transport delays. In the presence of delays, the
estimation is carried out one output at a time.

For more information about the OutputWeight option, see the estimation option
sets, such as arxOptions, ssestOptions, tfestOptions, nlarxOptions, and
nlhwOptions.

Note: For multiple-output idnlarx models containing neuralnet or treepartition
nonlinearity estimators, output weighting is ignored because each output is estimated
independently.
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Regularized Estimates of Model Parameters

1-46

In this section...

“What Is Regularization?” on page 1-46
“When to Use Regularization” on page 1-49

“Choosing Regularization Constants” on page 1-52

What Is Regularization?

Regularization is the technique for specifying constraints on the flexibility of a model,
thereby reducing uncertainty in the estimated parameter values.

Model parameters are obtained by fitting measured data to the predicted model response,
such as a transfer function with three poles or a second-order state-space model.

The model order is a measure of its flexibility — higher the order, the greater the
flexibility. For example, a model with three poles is more flexible than one with two
poles. Increasing the order causes the model to fit the observed data with increasing
accuracy. However, the increased flexibility comes with the price of higher uncertainty

in the estimates, measured by a higher value of random or variance error. On the other
hand, choosing a model with too low an order leads to larger systematic errors. Such
errors cannot be attributed to measurement noise and are also known as bias error.

Ideally, the parameters of a good model should minimize the mean square error (MSE),
given by a sum of systematic error (bias) and random error (variance):

MSE = | Bias |2 + Variance

The minimization is thus a tradeoff in constraining the model. A flexible (high order)
model gives small bias and large variance, whereas a simpler (low order) model

results in larger bias and smaller variance errors. Typically, you can investigate this
tradeoff between bias and variance errors by cross-validation tests on a set of models of
increasing flexibility. However, such tests do not always give full control in managing the
parameter estimation behavior. For example:

*  You cannot use the known (a priori) information about the model to influence the
quality of the fits.

* In grey-box and other structured models, the order is fixed by the underlying ODEs
and cannot be changed. If the data is not rich enough to capture the full range of
dynamic behavior, this typically leads to high uncertainty in the estimated values.
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* Varying the model order does not let you explicitly shape the variance of the
underlying parameters.

Regularization gives you a better control over the bias versus variance tradeoff by
introducing an additional term in the minimization criterion that penalizes the model
flexibility. Without regularization, for a model with one output and no weighting, the
parameter estimates are obtained by minimizing a weighted quadratic norm of the
prediction errors £(¢,6):

1Y,
Vy (9):N2£ (t,6)
t=1

where t is the time variable, N is the number of data samples, and e(¢,6) is the predicted
error computed as the difference between the observed output and the predicted output
of the model.

Regularization modifies the cost function by adding a term proportional to the square of
the norm of the parameter vector 8, so that the parameters 6 are obtained by minimizing:

A

1 N 9 1 2
P )= 43001 L o
t=

where A is a positive constant that has the effect of trading variance error in Vy(0)

for bias error — the larger the value of A, the higher the bias and lower the variance
of 6. The added term penalizes the parameter values with the effect of keeping their
values small during estimation. In statistics, this type of regularization is called ridge
regression. For more information, see “Introduction to Ridge Regression” (Statistics
and Machine Learning Toolbox) in the Statistics and Machine Learning Toolbox™
documentation.

Note: Another choice for the norm of 6 vector is the Li-norm, known as lasso
regularization. However, System Identification Toolbox supports only the 2-norm based
penalty, known as Ly regularization, as shown in the previous equation.

The penalty term is made more effective by using a positive definite matrix R, which
allows weighting and/or rotation of the parameter vector:

1-47



1 Choosing Your System Identification Approach

1-48

1 N T
:NZ (¢,0) +—/w R6

The square matrix R gives additional freedom for:

* Shaping the penalty term to meet the required constraints, such as keeping the model
stable

+ Adding known information about the model parameters, such as reliability of the

individual parameters in the 8 vector

For structured models such as grey-box models, you may want to keep the estimated
parameters close to their guess values to maintain the physical validity of the estimated

ES T ES
model. This can be achieved by generalizing the penalty term to A4 (0 -0 ) R (0 -0 ) ,

such that the cost function becomes:

VN(9)=% (t,6)+%1(6—0*)TR(0—6*)

||M2

Minimizing this cost function has the effect of estimating 0 such that their values remain
close to initial guesses 6*.

In regularization:

+  0* represents prior knowledge about the unknown parameters.

*  A*R represents the confidence in the prior knowledge of the unknown parameters.
This implies that the larger the value, the higher the confidence.

A formal interpretation in a Bayesian setting is that 0 has a prior distribution that is

Gaussian with mean 0* and covariance matrix o2/ AR , where o is the variance of
e(t). The use of regularization can therefore be linked to some prior information about the
system. This could be quite soft, such as the system is stable.

You can use the regularization variables A and R as tools to find a good model that
balances complexity and provides the best tradeoff between bias and variance. You

can obtain regularized estimates of parameters for transfer function, state-space,
polynomial, grey-box, process, and nonlinear black-box models. The three terms defining
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the penalty term, A, R and 6*, are represented by regularization options Lambda, R, and
Nominal, respectively in the toolbox. You can specify their values in the estimation
option sets for both linear and nonlinear models. In the System Identification app, click
Regularization in the linear model estimation dialog box or Estimation Options in
the Nonlinear Models dialog box.

When to Use Regularization

Use regularization for:

+  “Identifying Overparameterized Models” on page 1-49

* “Imposing A Priori Knowledge of Model Parameters in Structured Models” on page
1-50

+  “Incorporating Knowledge of System Behavior in ARX and FIR Models” on page
1-51

Identifying Overparameterized Models

Over-parameterized models are rich in parameters. Their estimation typically yields
parameter values with a high level of uncertainty. Over-parameterization is common for
nonlinear ARX (idnlarx) models and can also be for linear state-space models using free
parameterization.

In such cases, regularization improves the numerical conditioning of the estimation.
You can explore the bias-vs.-variance tradeoff using various values of the regularization
constant Lambda. Typically, the Nominal option is its default value of O, and R is an
identity matrix such that the following cost function is minimized:

N 1 N 9 1 2
7y )L 3¢ o)+ Lap]
t=1

In the following example, a nonlinear ARX model estimation using a large number of
neurons leads to an ill-conditioned estimation problem.

% Load estimation data.

load regularizationExampleData.mat nldata
% Estimate model without regularization.
Orders = [1 2 1];

NL = sigmoidnet("NumberOfUnits®,30);
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sys = nlarx(nldata,Orders,NL);
compare(nldata,sys)

Applying even a small regularizing penalty produces a good fit for the model to the data.

% Estimate model using regularization constant A = le-8.
opt = nlarxOptions;

opt.Regularization.Lambda = le-8;

sysr = nlarx(nldata,Orders,NL,opt);

compare(nldata,sysr)

Imposing A Priori Knowledge of Model Parameters in Structured Models

In models derived from differential equations, the parameters have physical significance.
You may have a good guess for typical values of those parameters even if the reliability
of the guess may be different for each parameter. Because the model structure is fixed in
such cases, you cannot simplify the structure to reduce variance errors.

Using the regularization constant Nominal, you can keep the estimated values close to
their initial guesses. You can also design R to reflect the confidence in the initial guesses
of the parameters. For example, if 0 is a 2-element vector and you can guess the value of
the first element with more confidence than the second one, set R to be a diagonal matrix
of size 2-by-2 such that R(1,1) >> R(2,2).

In the following example, a model of a DC motor is parameterized by static gain G and
time constant t. From prior knowledge, suppose you know that G is about 4 and t is about
1. Also, assume that you have more confidence in the value of t than G and would like to
guide the estimation to remain close to the initial guess.

% Load estimation data.

load regularizationExampleData.mat motorData

% Create idgrey model for DC motor dynamics.

mi = idgrey(@DCMotorODE,{"G",4;"Tau",1},"cd",{}, 0);
mi = setpar(mi, " label”,"default”);

% Configure Regularization options.

opt = greyestOptions;

opt.Regularization.Lambda = 100;

% Specify that the second parameter better known than the first.
opt.Regularization.R = [1, 1000];

% Specify initial guess as Nominal.
opt.Regularization_Nominal = "model";

% Estimate model.

sys = greyest(motorData,mi,opt)

getpar(sys)
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Incorporating Knowledge of System Behavior in ARX and FIR Models

In many situations, you may know the shape of the system impulse response from impact
tests. For example, it is quite common for stable systems to have an impulse response
that is smooth and exponentially decaying. You can use such prior knowledge of system
behavior to derive good values of regularization constants for linear-in-parameter models
such as ARX and FIR structure models using the arxRegul command.

For black-box models of arbitrary structure, it is often difficult to determine the optimal
values of Lambda and R that yield the best bias-vs.-variance tradeoff. Therefore, it

is recommended that you start by obtaining the regularized estimate of an ARX or

FIR structure model. Then, convert the model to a state-space, transfer function or
polynomial model using the idtF, idss, or idpoly commands, followed by order
reduction if required.

In the following example, direct estimation of a 15th order continuous-time transfer
function model fails due to numerical ill-conditioning.

% Load estimation data.

load dryer2

Dryer = iddata(y2,u2,0.08);

Dryerd = detrend(Dryer,0);

Dryerde = Dryerd(1:500);

xe Dryerd(1:500);

ze Dryerd(1:500);

zv = Dryerd(501:end);

% Estimate model without regularization.
sysl = tfest(ze,15);

Therefore, use regularized ARX estimation and then convert the model to transfer
function structure.

% Specify regularization constants.
[L, R] = arxRegul(ze,[15 15 1]);
OptARX = arxOptions;
OptARX_Regularization.Lambda = L;
OptARX._.Regularization.R = R;

% Estimate ARX model.

SysARX = arx(ze,[15 15 1],0ptARX);
% Convert model to continuous time.
sysc = d2c(SysARX);

% Convert model to transfer function.
sys2 = idtf(sysc);
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% Validate the models sysl and sys2.
compare(zv,sysl,sys2)

Choosing Regularization Constants

A guideline for selecting the regularization constants A and R is in the Bayesian
interpretation. The added penalty term is an assumption that the parameter vector 0 is a

Gaussian random vector with mean 8* and covariance matrix 62/ AR L.

You can relate naturally to such an assumption for a grey-box model, where the
parameters are of known physical interpretation. In other cases, this may be more
difficult. Then, you have to use ridge regression (R = 1; 8* = 0) and tune A by trial and
error.

Use the following techniques for determining A and R values:

*  “Incorporate Prior Information Using Tunable Kernels” on page 1-52

+ “Perform Cross-Validation Tests” on page 1-53
Incorporate Prior Information Using Tunable Kernels

Tuning the regularization constants for ARX models in arxRegul is based on simple
assumptions about the properties of the true impulse responses.

In the case of an FIR model, the parameter vector contains the impulse response
coefficients by for the system. From prior knowledge of the system, it is often known that
the impulse response is smooth and exponentially decaying:

2
E[b,]" =Cu®, corr{byb, ;}=p

where corr means correlation. The equation is a parameterization of the regularization
constants in terms of coefficients C, 1, and p and the chosen shape (decaying polynomial)
is called a kernel. The kernel thus contains information about parameterization of the
prior covariance of the impulse response coefficients.

You can estimate the parameters of the kernel by adjusting them to the measured data
using the RegulKernel input of the arxRegul command. For example, the DC kernel

estimates all three parameters while the TC kernel links p = \/ﬁ . This technique of

tuning kernels applies to all linear-in-parameter models such as ARX and FIR models.
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Perform Cross-Validation Tests

A general way to test and evaluate any regularization parameters is to estimate a model
based on certain parameters on an estimation data set, and evaluate the model fit for
another validation data set. This is known as cross-validation.

Cross-validation is entirely analogous to the method for selecting model order:

Generate a list of candidate A and R values to be tested.
Estimate a model for each candidate regularization constant set.
Compare the model fit to the validation data.

Use the constants that give the best fit to the validation data.

B W N —

For example:

% Create estimation and validation data sets.

ze = z(1:N/2);

zv = z(N/2:end);

% Specify regularization options and estimate models.
opt = ssestOptions;

for tests = 1:M

opt.Regularization.Lambda = Lvalue(test);
opt.Regularization.R = Rvalue(test);

m{test} = ssest(ze,order,opt);

end

% Compare models with validation data for model fit.
[~,fit] = compare(zv,m{:))
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Related Examples

. “Estimate Regularized ARX Model Using System Identification App” on page
1-55

“Regularized Identification of Dynamic Systems” on page 1-75

More About

. “Loss Function and Model Quality Metrics” on page 1-62
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Estimate Regularized ARX Model Using System Identification App

This example shows how to estimate regularized ARX models using automatically
generated regularization constants in the System Identification app.

Open a saved System Identification App session.
filename = fullfile(matlabroot, "help”, "toolbox™, ...
"ident”, "examples”, "ex_arxregul .sid");
systemldentification(Ffilename)
The session imports the following data and model into the System Identification app:

+  Estimation data eData

The data is collected by simulating a system with the following known transfer
function:

_ 0.02008+0.04017z"" +0.02008z 2
1-1.562"" +0.6414272

G(2)

* Transfer function model trueSys

trueSys is the transfer function model used to generate the estimation data eData
described previously. You also use the impulse response of this model later to compare
the impulse responses of estimated ARX models.

Import data hd Impart models hd
* Operations l

o /

=-- Preprocess -

elata 1. truesSys
,\‘mf e’
7 elata
Working Data

Estimate a 50th-order ARX model.

1 In the System Identification app, select Estimate > Polynomial Models to open
the Polynomial Models dialog box.
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2 Verify that ARX is selected in the Structure list.
3 In the Orders field, specify [0 50 0] as the ARX model order and delay.

Polynomial Models EI@
Structure: ARX: [na nb nk] -
Orders: [0500]
Equation: Ay=Bu+e
Method: @ ARX v
Domain: Continuous @) Discrete ( 1 seconds)

Add noise integration MARK" model)

Input delay: 0
Name: arx0500
Focus:| pregiction - Initial state: Auto -

Regularization... Covariance: | pofimate

Display progress Stop iterations
| Order Selection | | Order Editar... |
[ Estmate | [ ciose | | Hep |

4 Click Estimate to estimate the model.
A model arx0500 is added to the System Identification app.
Estimate a 50th-order regularized ARX model.

1 In the Polynomial Models dialog box, click Regularization.

2 In the Regularization Options dialog box, select TC from the Regularization
Kernel drop-down list.

1-56



Estimate Regularized ARX Model Using System Identification App

o "

4\ Regularization Options @

Regularization Kernel: INone -

Maone

Bias-variance tradg
Customn

) N e |:

SE
Weighting matrix - ns)):
HF
Default DI
DC
’ Close l ’ Help ]

Specifying this option automatically determines regularization constants using the
TC regularization kernel. To learn more, see the arxRegul reference page.

Click Close to close the dialog box.
3 Inthe Name field in the Polynomial Models dialog box, type arx0500reg.
4 Click Estimate.

A model arx0500reg is added to the System Identification app.

Impart models =

1

arx0500 \ arx0500regy

/]

truesSys

Compare the unregularized and regularized model outputs to estimation data.

Select the Model output check box in the System Identification app.
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The Measured and simulated model output plot shows that both the models have an 84%
fit with the data.

Measured and simulated model autput

Best Fits
arx0500: 84.58
05t | [ar=0500rey: 54,15

0s) W |,

1] 200 400 GO0 200 1000
Tirme

Determine if regularization leads to parameter values with less variance.
Because the model fit to the estimation data is similar with and without using
regularization, compare the impulse response of the ARX models with the impulse

responses of trueSys, the system used to collect the estimation data.

1  Click the trueSys icon in the model board of the System Identification app.

1-58



Estimate Regularized ARX Model Using System Identification App

Import models =

1

trugSys || ar0500 ||ar<0500req
lag'

Select the Transient resp check box to open the Transient Response plot window.

Model Views
Model output I{_:':l?Tra nzient resp Monline
|:| Model resids |:| Frequency resp Ha

|:| Zeros and poles

By default, the plot shows the step response.

In the Transient response plot window, select Options > Impulse response to
change to plot to display the impulse response.

Select Options > Show 99% confidence intervals to plot the confidence intervals.
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Impulse Response

Illllllllllr‘.“r
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The plot shows that the impulse response of the unregularized model arx0500 is far
off from the true system and has huge uncertainties.

To get a closer look at the model fits to the data and the variances, magnify a portion
of the plot.
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Impulse Response

=
=
=

Time

The fit of the regularized ARX model arx0500reg closely matches the impulse
response of the true system and the variance is greatly reduced as compared to the
unregularized model.

Related Examples

. “Regularized Identification of Dynamic Systems” on page 1-75
More About
. “Regularized Estimates of Model Parameters” on page 1-46
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Loss Function and Model Quality Metrics
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In this section...

“What is a Loss Function?” on page 1-62
“Options to Configure the Loss Function” on page 1-63
“Model Quality Metrics” on page 1-71

What is a Loss Function?

The System Identification Toolbox software estimates model parameters by minimizing
the error between the model output and the measured response. This error, called loss
function or cost function, is a positive function of prediction errors e(f). In general, this
function is a weighted sum of squares of the errors. For a model with ny-outputs, the loss
function V(0) has the following general form:

Vo)=L ST
©)="-Ye" (t,0)W(6)e(t,0)
Nt—l

where:

* N is the number of data samples.

* e(t,0) is ny-by-1 error vector at a given time ¢, parameterized by the parameter vector

0.

+  W(O) is the weighting matrix, specified as a positive semidefinite matrix. If Wis a
diagonal matrix, you can think of it as a way to control the relative importance of
outputs during multi-output estimations. When Wis a fixed or known weight, it does
not depend on 6.

The software determines the parameter values by minimizing V(6) with respect to 6.

For notational convenience, V(0) is expressed in its matrix form:

v (8) = trace( ET (6) E(6)W(6))

1
N

E(0) is the error matrix of size N-by-ny. The i:th row of E(0) represents the error value at
time ¢ = i.

The exact form of V() depends on the following factors:



Loss Function and Model Quality Metrics

* Model structure. For example, whether the model that you want to estimate is an
ARX or a state-space model.

+ Estimator and estimation options. For example, whether you are using n4sid or
ssest estimator and specifying options such as Focus and OutputWeight.

Options to Configure the Loss Function

You can configure the loss function for your application needs. The following estimation
options, when available for the estimator, configure the loss function:

Estimation Description Notes
Option
Focus Focus option affects how e(f) in the loss function is Specify the Focus

computed:

* When Focus is "prediction”, e(t) represents 1-
step ahead prediction error:

€p (t) = Ymeasured (t) — Ypredicted @®)

* When Focus is "simulation®, e(t) represents
the simulation error:

€ (t) = Ymeasured (t) - ysimulated(t)

Note: For models whose noise component is trivial,
(H(q) = 1), ey(t), and ey() are equivalent.

The Focus option can also be interpreted as

a weighting filter in the loss function. For

more information, see “Effect of Focus and
WeightingFilter Options on the Loss Function”
on page 1-68.

option in the estimation
option sets.

The estimation option
sets for oe and tfest
do not have a Focus
option because the
noise-component for
the estimated models is
trivial, and so e,(t) and
es(t) are equivalent.

WeightingFilt

When you specify a weighting filter, prefiltered
prediction or simulation error is minimized:

Specify the
WeightingFilter
option in the estimation
option sets. Not
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Estimation
Option

Description

Notes

e (t) = L(e(®)

where L(.) is a linear filter. The WeightingFilter

option can be interpreted as a custom weighting
filter that is applied to the loss function. For

more information, see “Effect of Focus and
WeightingFilter Options on the Loss Function”
on page 1-68.

all options for
WeightingFilter
are available for all
estimation commands.
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Estimation Description Notes

Option

EnforceStabi |l When EnforceStability is true, the *  Specify the
minimization objective also contains a constraint EnforceStability
that the estimated model must be stable. option in the estimation

option sets.

*  The estimation option
sets for procest and
ssregest commands
do not have an
EnforceStability
option. These estimation
commands always yield
a stable model.

* The estimation
commands tfest and
oe always yield a stable
model when used with
time-domain estimation
data.

+ Identifying unstable
plants requires data
collection under a closed
loop with a stabilizing
feedback controller.

A reliable estimation

of the plant dynamics
requires a sufficiently
rich noise component in
the model structure to
separate out the plant
dynamics from feedback
effects. As a result,
models that use a trivial
noise component (H(q)

= 1), such as models
estimated by tfest and
oe commands, do not
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Estimation Description Notes
Option
estimate good results for
unstable plants.
OutputWeight [OutputWeight option configures the weighting +  Specify the

matrix W(0) in the loss function and lets you control
the relative importance of output channels during
multi-output estimations.

* When OutputWeightis "noise”, W(6) equals

the inverse of the estimated variance of error e(t):

W(G):(%ET (B)E(G)J_l

Because W depends on 6, the weighting

is determined as a part of the estimation.
Minimization of the loss function with this
weight simplifies the loss function to:

V()= det(%ET(G)E(G)j

Using the inverse of the noise variance is the
optimal weighting in the maximum likelihood
sense.

* When OutputWeight is an ny-by-ny positive
semidefinite matrix, a constant weighting is

used. This loss function then becomes a weighted

sum of squared errors.

OutputWeight option
in the estimation option
sets. Not all options

for OutputWeight

are available for all
estimation commands.

* OutputWeight is not
available for polynomial
model estimation
because such models are
always estimated one
output at a time.

* OutputWeight cannot
be "noise” when
SearchMethod is
"Isgnonlin®.
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Estimation Description Notes
Option
ErrorThresholErrorThreshold option specifies the threshold *  Specify the
for when to adjust the weight of large errors ErrorThreshold
from quadratic to linear. Errors larger than option in the estimation
ErrorThreshold times the estimated standard option sets.
deviation have a linear weight in the loss function. |.

A typical value for the
error threshold p = 1.6
minimizes the effect
of data outliers on the
estimation results.

VO = S (50)W (0)e(1,0)+ ToT (160)W (0
tel ted

where:
+ I represents those time instants for which

*
|e(t)| <po , where p is the error threshold.

+ J represents the complement of I, that is, the
time instants for which |e(t)| >=p*o.

+ o1s the estimated standard deviation of the error.

The error v(t,0) is defined as:

v(t,0)=e(t,0 gL
(¢,0) = e(,0) 2 9)
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Estimation Description Notes

Option

RegularizatiqRegularization option modifies the loss function |+ Specify the
to add a penalty on the variance of the estimated Regularization
parameters. option in the estimation

option sets.
The loss function is set up with the goal of

minimizing the prediction errors. It does not include
specific constraints on the variance (a measure

of reliability) of estimated parameters. This can
sometimes lead to models with large uncertainty in
estimated model parameters, especially when the
model has many parameters.

*  For linear-in-parameter
models (FIR models)
and ARX models,
you can compute
optimal values of the
regularization variables
R and A using the

Regularization introduces an additional term in arxRegul command.

the loss function that penalizes the model flexibility:

v (6) =%i& (1.O)W (0)6([,0)+%/’t(0 6

t=1

The second term is a weighted (R) and scaled (d)
variance of the estimated parameter set 6 about its
nominal value 6*.
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Effect of Focus and WeightingFi I'ter Options on the Loss Function

The Focus option can be interpreted as a weighting filter in the loss function. The
WeightingFi lter option is an additional custom weighting filter that is applied to the
loss function.

To understand the effect of Focus and WeightingFilter, consider a linear single-input
single-output model:

y(t) = G(q,0) u(t) + H(g,0) e(t)

Where G(q,0) is the measured transfer function, H(g,0) is the noise model, and e(t)
represents the additive disturbances modeled as white Gaussian noise. q is the time-shift
operator.
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In frequency domain, the linear model can be represented as:
Y(w) = G(w,0)U(w)+ H(w,0)E(w)

where Y(w), U(w), and E(w) are the Fourier transforms of the output, input, and output
error, respectively. G(w,0) and H(w,0) represent the frequency response of the input-
output and noise transfer functions, respectively.

The loss function to be minimized for the SISO model is given by:
V() =l%eT (¢,0)e(t,0)
N t:1 b ’
Using Parseval’s Identity, the loss function in frequency-domain is:
V©,0) =—| B
N

Substituting for E(w) gives:

? )

YO _ 66,0 >
|H®6, )

VO,w)= L H
N |U(w)

Thus, you can interpret minimizing the loss function V as fitting G(6,®) to the empirical
2
||U(w)||
2
|H(6,0)|

to specifying Focus as "prediction”. The estimation emphasizes frequencies where

transfer function Y (w)/U(w), using as a weighting filter. This corresponds

input has more power (||U(oo)||2 is greater) and de-emphasizes frequencies where noise is

significant (|H©@,w) is large).

When Focus is specified as "simulation®, the inverse weighting with |H (9,60)"2 is not

used. That is, only the input spectrum is used to weigh the relative importance of the
estimation fit in a specific frequency range.
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When you specify a linear filter 1. as WeightingFilter, it is used as an additional
custom weighting in the loss function.

2 |U)f
|z @)

Y(w

1
V)= —
©) Ulw)

= G6)) I

@)

Here L(w) is the frequency response of the filter. Use L(w) to enhance the fit of the

model response to observed data in certain frequencies, such as to emphasize the fit close
to system resonant frequencies.

The estimated value of input-output transfer function G is the same as what you get if
you instead first prefilter the estimation data with L(.) using idfilt, and then estimate

the model without specifying WeightingFilter. However, the effect of L(.) on the
estimated noise model H depends on the choice of Focus:

* Focusis "prediction”™ — The software minimizes the weighted prediction error
er(t)=L(e,@), and the estimated model has the form:

¥(@t) = G(@ut)+ H,(ge®)

Where H;(q) = H(q)/ L(g) . Thus, the estimation with prediction focus creates a
biased estimate of H. This is the same estimated noise model you get if you instead
first prefilter the estimation data with L(.) using idfilt, and then estimate the
model.

When H is parameterized independent of G, you can treat the filter 1.(.) as a way
of affecting the estimation bias distribution. That is, you can shape the trade-

off between fitting G to the system frequency response and fitting H /L to the
disturbance spectrum when minimizing the loss function. For more details see,
section 14.4 in System Identification: Theory for the User, Second Edition, by Lennart
Ljung, Prentice Hall PTR, 1999.

* Focusis "simulation™ — The software first estimates G by
minimizing the weighted simulation error er () = L(es(t)) , where

e () = Ymeasured (£) — @)Uy qsureq () - Once G is estimated, the software fixes it

S
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and computes H by minimizing pure prediction errors e(f) using unfiltered data. The
estimated model has the form:

y(t) = G(q)u(t) + He(t)

If you prefilter the data first, and then estimate the model, you get the same estimate
for G but get a biased noise model H /L.

Thus, the WeightingFilter has the same effect as prefiltering the estimation data
for estimation of G. For estimation of H, the effect of WeightingFilter depends upon
the choice of Focus. A prediction focus estimates a biased version of the noise model

H /1, while a simulation focus estimates H. Prefiltering the estimation data, and then

estimating the model always gives H /L as the noise model.

Model Quality Metrics

After you estimate a model, use model quality metrics to assess the quality of identified
models, compare different models, and pick the best one. The Report.Fit property of an
identified model stores various metrics such as FitPercent, LossFcn, FPE, MSE, AIC,
nAIC, AICc, and BIC values.

FitPercent, LossFcn, and MSE are measures of the actual quantity that is
minimized during the estimation. For example, if Focus is "simulation”, these
quantities are computed for the simulation error e (f). Similarly, if you specify the
WeightingFilter option, then LossFcn, FPE, and MSE are computed using filtered
residuals e (7).

FPE, AIC, nAIC, AICc, and BIC measures are computed as properties of the output
disturbance according to the relationship:

¥(t)= Gla)u(t) + H (q) 0

G(q) and H(q) represent the measured and noise components of the estimated model.

Regardless of how the loss function is configured, the error vector e() is computed as
1-step ahead prediction error using a given model and a given dataset. This implies
that even when the model is obtained by minimizing the simulation error e (f), the
FPE and various AIC values are still computed using the prediction error e, (£). The
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actual value of e, (¢) is determined using the pe command with prediction horizon of 1
and using the initial conditions specified for the estimation.

These metrics contain two terms — one for describing the model accuracy and another

to describe its complexity. For example, in FPE, det[% E'E J describes the model

1+

accuracy and ’]1\; describes the model complexity.
1 _
N

By comparing models using these criteria, you can pick a model that gives the best
(smallest criterion value) trade-off between accuracy and complexity.

Quality Metric Description
FitPercent Normalized Root Mean Squared Error (NRMSE) expressed as a
percentage, defined as:
FitPercent =100| 1 - "ymeasured el "
“y measured — Ymeasured
where:
Ymeasured 18 the measured output data.
" Ymeasured 18 its (channel-wise) mean.
*  Ymodel 18 the simulated or predicted response of the model, governed
by the Focus.
* | |.|| indicates the 2-norm of a vector.
FitPercent varies between - Inf (bad fit) to 100 (perfect fit). If the
value is equal to zero, then the model is no better at fitting the measured
data than a straight line equal to the mean of the data.
LossFcn Value of the loss function when the estimation completes. It contains

effects of error thresholds, output weight, and regularization used for
estimation.
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Quality Metric

Description

MSE

Mean Squared Error measure, defined as:
1 Y,
MSE=—>Ye¢" (t)e(t
FOYAORD

where:

+ e(t) is the signal whose norm is minimized for estimation.

* N is the number of data samples in the estimation dataset.

FPE

Akaike’s Final Prediction Error (FPE), defined as:

"p
1 1+——
FPE =det| —ETE | — N
N np

N

where:

*  n,pis the number of free parameters in the model. n, includes the
number of estimated initial states.

* N is the number of samples in the estimation dataset.

* Eis the N-by-n, matrix of prediction errors, where n, is the number
of output channels.

AlC

A raw measure of Akaike's Information Criterion, defined as:

AIC = N*Zog(det (]%]ETED+2*11P + N (n, *log(27)+1)

1-73



1 Choosing Your System Identification Approach

Quality Metric

Description

AlCc

Small sample-size corrected Akaike's Information Criterion, defined as:

(n,+1)
AlCc=AIC+2%n, * =
Pr(N-n,-1

This metric is often more reliable for picking a model of optimal
complexity from a list of candidate models when the data size N is small.

nAIC

Normalized measure of Akaike's Information Criterion, defined as:

Z*np
N

nAIC = log[det(%ETE]]+

BIC

Bayesian Information Criterion, defined as:

BIC = N*log(det(% ET ED+ N #(n, *log(2r)+ 1) +n, *log(N)
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See Also

aic | fpe | goodnessofFit | nparams | pe | predict | sim

More About

“System Identification Overview”

“Why Simulate or Predict Model Output?” on page 17-8
“Assigning Estimation Weightings” on page 6-21
“Modeling Multiple-Output Systems” on page 1-43

“Regularized Estimates of Model Parameters” on page 1-46
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Regularized Identification of Dynamic Systems

This example shows the benefits of regularization for identification of linear and
nonlinear models.

What is Regularization

When a dynamic system is identified using measured data, the parameter estimates are
determined as:

i argmin Vy(#)
[}

where the criterion typically is a weighted quadratic norm of the prediction errors £(t,0),
An L2 regularized criterion is modified as:

! r:rymfj]]l'_a_-liﬁj1)-.{{.1 OV RO — 0)

A common special case of this is when 0" = 0.5 = I This is called ridge regression in
statistics, e.g, see the ridge command in Statistics and Machine Learning Toolbox™.

A useful way of thinking about regularization is that #" represents prior knowledge
about the unknown parameter vector and that A # i describes the confidence in this
knowledge. (The larger A = I, the higher confidence). A formal interpretation in a
Bayesian setting is that # has a prior distribution that is Gaussian with mean #" and

F 1
. . o i L F . . . .
covariance matrix @ /A , where @~ is the variance of the innovations.

The use of regularization can therefore be linked to some prior information about the
system. This could be quite soft, like that the system is stable. The regularization
variables A and Fi can be seen as tools to find a good model complexity for best tradeoff
between bias and variance. The regularization constants A and Ji are represented by
options called Lambda and R respectively in System Identification Toolbox™. The choice
of #" is controlled by the Nominal regularization option.

Bias - Variance Tradeoff in FIR modeling

Consider the problem of estimating the impulse response of a linear system as an FIR
model:
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1-76

nh

ylt) = Z,r,r[k}re[.f - k)

k=0

These are estimated by the command: m = arx(z,[0 nb 0]). The choice of order
nb is a tradeoff between bias (large nb is required to capture slowly decaying impulse
responses without too much error) and variance (large nb gives many parameters to
estimate which gives large variance).

Let us illustrate it with a simulated example. We pick a simple second order butterworth
filter as system:

0.02008 + 0.04017271 + 0.020082 2
1 —-1.561=z"1+ 0.6414=—2

Giz) =

Its impulse response is shown in Figure 1:

trueSys = 1dtf([0-02008 0.04017 0.02008],[1 -1.561 0.6414],1);

[y0,t] = impulse(trueSys);

plot(t,y0)

xlabel ("Time (seconds)®), ylabel("Amplitude®), title("Impulse Response®)
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Impulse Response
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Figure 1: The true impulse response.
The impulse response has decayed to zero after less than 50 samples. Let us estimate

it from data generated by the system. We simulate the system with low-pass
filtered white noise as input and add a small white noise output disturbance with

variance 0.0025 to the output. 1000 samples are collected. This data is saved in the

regularizationExampleData.mat file and shown in Figure 2.

load regularizationExampleData.mat eData

plot(ebata)
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Amplitude

1-78

o
wn

Input-Output Data
y1

DE.U‘IN 'IM »u }‘ | | [
w\* i lig ) (v"' i lw lil , LW‘ \ Al

\;|

i
=

ul

It

100 200 300 400 500 600 F00 800 900 1000
Time (seconds)

Figure 2: The data used for estimation.

To determine a good value for nb we basically have to try a few values and by some
validation procedure evaluate which is best. That can be done in several ways, but since
we know the true system in this case, we can determine the theoretically best possible
value, by trying out all models with nb=1, . . . ,50 and find which one has the best

fit to the true impulse response. Such a test shows that nb = 13 gives the best error
norm (mse = 0.2522) to the impulse response. This estimated impulse response is shown
together with the true one in Figure 3.

nb = 13;
ml3 = arx(eData,[0 nb 0]);

[y13,~,~,y13sd] = impulse(ml3,t);
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plot(t,y0,t,y13)
xlabel ("Time (seconds)®), ylabel("Amplitude®), title("Impulse Response®)
legend("True system®,"13:th order FIR model®)

Impulse Response
T T

0.25 T T

True system
13:th order FIR model

Amplitude

0.05

0 5 10 15 20 25 30 35
Time (seconds)

Figure 3: The true impulse response together with the estimate for order nb = 13.

Despite the 1000 data points with very good signal to noise ratio the estimate is not
impressive. The uncertainty in the response is also quite large as shown by the 1
standard deviation values of response. The reason is that the low pass input has poor
excitation.

plot(t,y0,t,y13,t,y13+y13sd, "r:",t,y13-y13sd, "r:")
xlabel ("Time (seconds)®), ylabel("Amplitude®), title("Impulse Response®)
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legend("True system®,"13:th order FIR model®, "Bounds®)

Impulse Response
0.5 . . . .

True system
04t : 13:th order FIR model |
2 Bounds

D_ 3 L ':. -

02f - ENERE -

o1 b e \"“\ A \ ]

Amplitude
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_-7(_

—D3 i i i i i i
0 5 10 15 20 25 30 35

Time (seconds)

Figure 4: Estimated response with confidence bounds corresponding to 1 s.d.

Let us therefore try to reach a good bias-variance trade-off by ridge regression for a FIR
model of order 50. Use arxOptions to configure the regularization constants. For this

2
exercise we apply a simple penalty of 1161]°.

aopt = arxOptions;
aopt.Regularization.Lambda = 1;
m50r = arx(eData, [0 50 0], aopt);

The resulting estimate has an error norm of 0.1171 to the true impulse response and is
shown in Figure 5 along with the confidence bounds.
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Amplitude

[y50r,~,~,y50rsd] = impulse(m50r,t);

plot(t,y0,t,y50r,t,y50r+y50rsd, "r:",t,y50r-y50rsd, "r:")

xlabel ("Time (seconds)®), ylabel("Amplitude®), title("Impulse Response®)

legend("True system®,*50:th order regularized estimate®)

Impulse Response

D2 T T T T T T
True system
50:th order regularized estimate
0.15 T
0.1 1
0.05 [ 1
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Figure 5: The true impulse response together with the ridge-regularized estimate for

order nb = 50.

Clearly even this simple choice of regularization gives a much better bias-variance
tradeoff, than selecting an optimal FIR order with no regularization.

35
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Automatic Determination of Regularization Constants for FIR Models

We can do even better. By using the insight that the true impulse response decays to

zero and is smooth, we can tailor the choice of 1. A to the data. This is achieved by the
arxRegul function.

[L,R] = arxRegul(eData,[0 50 0],arxRegulOptions("RegulKernel®,"TC"));
aopt.Regularization.Lambda = L;

aopt.Regularization.R = R;

mrtc = arx(eData, [0 50 0], aopt);

[ytc,~,~,ytcsd] = impulse(mrtc,t);

arxRegul uses fmincon from Optimization Toolbox™ to compute the hyper-
parameters associated with the regularization kernel ("T'C" here). If Optimization
Toolbox 1s not available, a simple Gauss-Newton search scheme is used instead; use the
"Advanced.SearchMethod" option of arxRegulOptions to choose the search method
explicitly. The estimated hyper-parameters are then used to derive the values of i and A.

Using the estimated values of i and A in ARX leads to an error norm of 0.0461 and the
response is shown in Figure 6. This kind of tuned regularization is what is achieved also
by the impulseest command. As the figure shows, the fit to the impulse response as

well as the variance is greatly reduced as compared to the unregularized estimates. The
price is a bias in the response estimate, which seems to be insignificant for this example.

plot(t,y0,t,ytc,t,ytc+ytesd, “r:",t,ytc-ytesd, "r: ")
xlabel ("Time (seconds)®), ylabel("Amplitude®), title("Impulse Response®)
legend("True system®,"50:th order tuned regularized estimate®)
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Amplitude
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Figure 6: The true impulse response together with the tuned regularized estimate for
order nb = 50.

Using Regularized ARX-models for Estimating State-Space Models

Consider a system mO, which is a 30:th order linear system with colored measurement
noise:

yit) = Glglult) + H{qg)e(t)
where G(Qq) is the input-to-output transfer function and H(Q) is the disturbance transfer

function. This system is stored in the regularizationExampleData.mat data file. The
impulse responses of G(q) and H(q) are shown in Figure 7.
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load regularizationExampleData.mat mO

mOH = noise2meas(m0); % the extracted noise component of the model
[yG,t] = impulse(mO);

yH = impulse(mOH,t);

clf

subplot(211)

plot(t, yG)

title( " Impulse Response of G(q)"), ylabel("Amplitude®)

subplot(212)

plot(t, yH)

title( " Impulse Response of H(q)"), ylabel("Amplitude®)
xlabel ("Time (seconds)®)

Impulse Response of G(q)
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1-84



Regularized Identification of Dynamic Systems

Amplitude

ik

Figure 7: The impulse responses of G(q) (top) and H(q) (bottom).

We have collected 210 data points by simulating mO with a white noise input
u with variance 1, and a noise level e with variance 0.1. This data is saved in
regularizationExampleData.mat and is plotted below.

load regularizationExampleData.mat mOsimdata
clf
plot(mOsimdata)

Input- Dutput Data

2 l\r.
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—-l—__
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»Millr” \”'
i H_

Nl AT
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Figure 8: The data to be used for estimation.

To estimate the impulse responses of mO from these data, we can naturally employ state-
space models in the innovations form (or equivalently ARMAX models) and compute the
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impulse response using the impulse command as before. For computing the state-space
model, we can use a syntax such as:

mk = ssest(mOsimdata, k, "Ts", 1);
The catch is to determine a good order k. There are two commonly used methods:

*  Cross validation CV: Estimate mk for kK = 1, ...,maxo using the first half of the
data ze = mOsimdata(l:150) and evaluate the fit to the second half of the data zv
= mOsimdata(151:end) using the compare command: [~,Ffitk] = compare(zv,
mk, compareOptions("InitialCondition”, "z")). Determine the order Kk that
maximizes the fit. Then reestimate the model using the whole data record.

*  Use the Akaike criterion AIC: Estimate models for orders kK = 1, ...,maxo using the
whole data set, and then pick that model that minimizes aic(mk).

Applying these techniques to the data with a maximal order maxo = 30 shows that CV
picks k = 15 and AIC picks k = 3.

The "Oracle" test: In addition to the CV and AIC tests, one can also check for what order
k the fit between the true impulse response of G(q) (or H(q)) and the estimated model is
maximized. This of course requires knowledge of the true system mO which is impractical.
However, if we do carry on this comparison for our example where mO is known, we

find that k = 12 gives the best fit of estimated model's impulse response to that of mO
(=1G(q) |). Similarly, we find that k = 3 gives the best fit of estimated model's noise
component's impulse response to that of the noise component of mO (=|H(q) |). The Oracle
test sets a reference point for comparison of the quality of models generated by using
various orders and regularization parameters.

Let us compare the impulse responses computed for various order selection criteria:

m3 = ssest(mOsimdata, 3, "Ts", 1);
ssest(mOsimdata, 12, "Ts", 1);
ssest(mOsimdata, 15, "Ts", 1);

y3 = impulse(m3, t);
impulse(ml2, t);
impulse(ml5, t);

plot(t,yG, t,yl2, t,yl5, t,y3)
xlabel ("Time (seconds)®), ylabel("Amplitude®), title("Impulse Response®)
legend("True G(Q)",---
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sprintf("Oracle choice: %2.4g%%",100*goodnessOfFit(y12,yG, "NRMSE")), ...
sprintf("CV choice: %2.49%%",100*goodnessOfFit(yl1l5,yG, "NRMSE®")), - ..
sprintf("AIC choice: %2.49%%",100*goodnessOfFit(y3,yG, "NRMSE")))

Impulse Response
0.3 T T T T T
True G(g)
0.2r Oracle choice: 83.01% |
C\ choice: 77.1%
0.1 . AIC choice: 79.34% |

0 10 20 30 40 50 60
Time (seconds)

Figure 9: The true impulse response of G(q) compared to estimated models of various
orders.

yH3 = impulse(noise2meas(m3), t);
yH15 = impulse(noise2meas(ml5), t);

plot(t,yH, t,yH3, t,yH15, t,yH3)
xlabel ("Time (seconds)®), ylabel("Amplitude®), title("Impulse Response®)
legend("True H(Q)",---

sprintf("Oracle choice: %2.4g%%",100*goodnessOfFit(yH3,yH, "NRMSE")), - ..
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sprintf("CV choice: %2.49%%",100*goodnessOfFit(yH15,yH, *NRMSE")), - ..
sprintf("AIC choice: %2.4g%%",100*goodnessOfFit(yH3,yH, "NRMSE®)))

Impulse Response
True Hig)
Oracle choice: T7.26%
C\ choice: 64.13%
AIC choice: 77 .26%
) \ N \
R S — _
i
]
Il
If
]
/
0 10 20 30 40 50 60

Time (seconds)

Figure 10: The true impulse response of H(q) compared to estimated noise models of

various orders.
We see that a fit as good as 83% is possible to achieve for G(q) among the state-space
models, but the order selection procedure may not find that best order.

We then turn to what can be obtained with regularization. We estimate a rather high

order, regularized ARX-model by doing:

aopt = arxOptions;
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[Lambda, R] = arxRegul(mOsimdata, [5 60 0], arxRegulOptions("RegulKernel®,"TC"));
aopt.Regularization.R = R;

aopt.Regularization.Lambda = Lambda;

mr = arx(mOsimdata, [5 60 0], aopt);

nmr noise2meas(mr);

ymr impulse(mr, t);

yHmr = impulse(nmr, t);

fprintf("Goodness of fit for ARX model is: %2.4g%%\n",100*goodnessOfFit(ymr,yG, "NRMSE"]
fprintf("Goodness of fit for noise component of ARX model is: %2.4g%%\n*,100*goodnessO1

Goodness of fit for ARX model is: 83.12%
Goodness of fit for noise component of ARX model is: 78.71%

It turns out that this regularized ARX model shows a fit to the true G(q) that is even
better than the Oracle choice. The fit to H(Q) is more than 80% which also is better that
the Oracle choice of order for best noise model. It could be argued that mr is a high order
(60 states) model, and it is unfair to compare it with lower order state space models. But
this high order model can be reduced to, say, order 7 by using the bal red command
(requires Control System Toolbox™):

mred7 = balred(idss(mr),7);
nmred7 = noise2meas(mred7);
y7mr = impulse(mred7, t);

y7Hmr = impulse(nmred7, t);

Figures 11 and 12 show how the regularized and reduced order regularized models
compare with the Oracle choice of state-space order for ssest without any loss of
accuracy.

plot(t,yG, t,yl2, t,ymr, t,y7mr)

xlabel ("Time (seconds)®"), ylabel("Amplitude®), title("Impulse Response®)

legend("True G(q)", - --
sprintf("Oracle choice: %2.49%%",100*goodnessOfFit(yl12,yG, "NRMSE")), - -.
sprintf("High order regularized: %2.4g%%",100*goodnessOfFit(ymr,yG, "NRMSE")), . - .
sprintf("Reduced order: %2.49%%",100*goodnessOfFit(y7mr,yG, "NRMSE")))
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Impulse Response

D:]' 1 1 T T T
True G(g)
0.2 r Oracle choice: 83.01% 1
High order regularized: 83.12%
0.1 Reduced order: B3.20% 1
0F _ i
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- 02T 7
E
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—DT 1 1 1 1 1
1] 10 20 30 40 50 60
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Figure 11: The regularized models compared to the Oracle choice for G(Q).

plot(t,yH, t,yH3, t,yHmr, t,y7Hmr)
xlabel ("Time (seconds)®"), ylabel("Amplitude®), title("Impulse Response®)
legend("True H(Q)", - --

sprintf("Oracle choice: %2.49%%",100*goodnessOfFit(yH3,yH, "NRMSE")), - - .

sprintf("High order regularized: %2.4g%%",100*goodnessOfFit(yHmr,yH, "NRMSE")), - ..

sprintf("Reduced order: %2.4g9%%",100*goodnessOfFit(y7Hmr,yH, "NRMSE")))
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Amplitude

Impulse Response

'1 T T T T T
True H{g)
COracle choice: 77.26%
High order regularized: 78.71%
Reduced order: 78.08%
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Figure 12: The regularized models compared to the Oracle choice for H(q).

A natural question to ask is whether the choice of orders in the ARX model is as sensitive
a decision as the state space model order in ssest. Simple test, using e.g. arx(z, [10
50 0], aopt), shows only minor changes in the fit of G(Qq).

State Space Model Estimation by Regularized Reduction Technique

The above steps of estimating a high-order ARX model, followed by a conversion to
state-space and reduction to the desired order can be automated using the ssregest
command. ssregest greatly simplifies this procedure while also facilitating other
useful options such as search for optimal order and fine tuning of model structure by
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specification of feedthrough and delay values. Here we simply reestimate the reduced
model similar to mred7 using ssregest:

opt = ssregestOptions("ARXOrder®,[5 60 0]);

mred7_direct = ssregest(mOsimdata, 7, "Feedthrough®, true, opt);
compare(mOsimdata, mred7, mred7_direct)

Simulated Response Comparison

’ | | | | | | I rnﬂsilmdata [I1,r1]| I
mred?: 61.97%
27 | mred7_direct: 61.6%/ |
_ |
! rlll NI ‘ H h ﬂ f | h l-
A WA T
R A (raraTufe
< | i N
21 II |
gt |
. | . . . , , , . . .

20 40 60 80 100 120 140 160 180 200
Time (seconds)

Figure 13: Comparing responses of state space models to estimation data.
h = impulseplot(mred7, mred7_direct, 40);
showConfidence(h,1) % 1 s.d. "zero interval”

hold on
s = stem(t,yG,"r");
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s._DisplayName = "True G(q)";

legend("show®)

Impulse Response

From: ul To: y1

i
]
o
T
P
=

mred?

mred? direct

2 True Glg)

=
[

10

15 20 25
Time (seconds)

Figure 14: Comparing impulse responses of state space models.

40

In Figure 14, the confidence bound is only shown for the model mred7_direct since it
was not calculated for the model mred7. You can use the translatecov command for
generating confidence bounds for arbitrary transformations (here balred) of identified

models. Note also that the ssregest command does not require you to provide the

"ARXOrder" option value. It makes an automatic selection based on data length when no

value is explicitly set.
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Basic Bias - Variance Tradeoff in Grey Box Models

We shall discuss here grey box estimation which is a typical case where prior information
meets information in observed data. It will be good to obtain a well balanced tradeoff
between these information sources, and regularization is a prime tool for that.

Consider a DC motor (see e.g., iddemo7) with static gain G to angular velocity and time
constant T:

G
(fls) = ————
() (1 4+ s7)

In state-space form we have:

where © = [#1:22] i the state vector composed of the angle 1 and the velocity 2. We
observe both states in noise as suggested by the output equation.

From prior knowledge and experience we think that (& is about 4 and 7 is about 1.
We collect in motorData 400 data points from the system, with a substantial amount
of noise (standard deviation of e is 50 in each component. We also save noise-free
simulation data for the same model for comparison purposes. The data is shown in
Figure 15.

load regularizationExampleData.mat motorData motorData_NoiseFree
t = motorData.Samplinglnstants;

subplot(311)
plot(t,[motorData_NoiseFree.y(:,1),motorData.y(:,1)])

ylabel ("Output 1%)

subplot(312)

plot(t, [motorData_NoiseFree.y(:,2),motorData.y(:,2)])

ylabel ("Output 2%)

subplot(313)

plot(t,motorData_NoiseFree.u) % input is the same for both datasets
ylabel (" Input®)
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Output 2 Output 1

Input

xlabel ("Time (seconds)®)
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Figure 15: The noisy data to be used for grey box estimation superimposed over noise-

free simulation data to be used for qualifications. From top to bottom: Angle, Angular
Velocity, Input voltage.

The true parameter values in this simulation are G = 2.2 and 7= 0.8. To estimate the
model we create an 1dgrey model file DCMotorODE .m.

type("DCMotorODE™)

function [A,B,C,D] = DCMotorODE(G,Tau,Ts)
%DCMOTORODE ODE file representing the dynamics of a DC motor parameterized
%by gain G and time constant Tau.

1-95



1 Choosing Your System Identification Approach

% [A,B,C,D,K,X0] = DCMOTORODE(G,Tau,Ts) returns the state space matrices
% of the DC-motor with time-constant Tau and static gain G. The sample
% time is Ts.

%  This file returns continuous-time representation if input argument Ts
% is zero. ITf Ts>0, a discrete-time representation is returned.

% See also IDGREY, GREYEST.
%  Copyright 2013 The MathWorks, Inc.

[0 1;0 -1/Tau];

[0; G/Tau];

eye(2);

[0;0];

f Ts>0 % Sample the model with sample time Ts
expm([[A B]*Ts; zeros(1,3)]):;
s(1:2,1:2);

s(1:2,3);

=00 W >

S
A
B

end
An idgrey object is then created as:
mi = idgrey(@DCMotorODE,{"G", 4; “Tau", 1},"cd",{}, 0);

where we have inserted the guessed parameter value as initial values. This model is
adjusted to the information in observed data by using the greyest command:

m = greyest(motorData, mi)

m =
Continuous-time linear grey box model defined by @DCMotorODE function:

dx/dt = A x(t) + B u(t) + K e(t)
y(t) = C x(t) + D u(t) + e(b)
A =
x1 X2
x1 0 1
X2 0 -1.741
B =
ul
X1 0
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x2 3.721
C =

x1l x2
yl 1 0
y2 0 1
D =

ul
yl 0
y2 0
K =

yl y2
x1 0 0
X2 0 0

Model parameters:
G = 2.138
Tau = 0.5745

Parameterization:
ODE Function: @DCMotorODE
(parameterizes both continuous- and discrete-time equations)
Disturbance component: none
Initial state: "auto”
Number of free coefficients: 2
Use ''getpvec', "getcov" for parameters and their uncertainties.

Status:

Estimated using GREYEST on time domain data "motorData’.
Fit to estimation data: [29.46;4.167]%

FPE: 6.074e+06, MSE: 4908

The model m has the parameters ™= 0.57 and G = 2.14 and reproduces the data is shown
in Figure 16.

copt = compareOptions(”InitialCondition®, "z%);
[ymi, fiti] = compare(motorData, mi, copt);

[ym, Fit] = compare(motorData, m, copt);

t = motorData.Samplinglnstants;

subplot(211)

plot(t, [motorData.y(:,1), ymi-y(:,1), ym.y(:,1)D
axis tight

ylabel ("Output 17)
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legend({"Measured output”®, ...
sprintf(" Initial: %2.4g%%" ,Fiti(l)),---
sprintf("Estimated: %2.4g%%",Fit(1))},--.-
"Location”, "BestOutside®)

subplot(212)

plot(t, [motorData.y(:,2), ymi-y(:,2), ym.y(:,2)D

ylabel ("Output 27)

axis tight

legend({"Measured output”, ...
sprintf("Initial: %2.4g%%" ,Fiti(2)), ...
sprintf("Estimated: %2.4g%%",Fit(2))}., ...
"Location”, "BestOutside®)

Output 1

e ——
e

15 20 25 30 35 40
Measured output
100 | Initial: 1.037%
o | ! | LE Estimated: 4.167%
2 o MR 0 ot P 115V S
o _.| ! | YL .I J L
g Y i Tl ot Uy
o i '
-100 |

10 20 30 40

Figure 16: Measured output and model outputs for initial and estimated models.
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In this simulated case we have also access to the noise-free data
(motorData_NoiseFree) and depict the fit to the noise-free data in Figure 17

[ymi, Fiti] = compare(motorData_NoiseFree, mi, copt);
[ym, Fit] = compare(motorData_NoiseFree, m, copt);
subplot(211)
plot(t, [motorData_NoiseFree.y(:,1), ymi.y(:,1), ym.y(:,1)])
axis tight
ylabel ("Output 17)
legend({"Noise-free output”, ...
sprintf(CInitial: %2.4g%%",Fiti(1)),- .-
sprintf("Estimated: %2.4g%%",Fit(1))}, ---
"Location”, "BestOutside™)
subplot(212)
plot(t, [motorData_NoiseFree.y(:,2), ymi.y(:,2), ym.y(:,2)])
ylabel ("Output 27)
axis tight
legend({"Noise-free output”, ...
sprintf(CInitial: %2.4g%%",Fiti(2)),- ..
sprintf("Estimated: %2.4g%%",Fit(2))},---
"Location”, "BestOutside™)
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Figure 17: Noise-free output and model outputs for initial and estimated models.

We can look at the parameter estimates and see that the noisy data themselves give

estimates that not quite agree with our prior physical information. To merge the data
information with the prior information we use regularization:

opt = greyestOptions;
opt.Regularization.Lambda = 100;

opt.Regularization.R = [1, 1000]; % second parameter better known than Ffirst
opt.Regularization.Nominal = "model”;

mr = greyest(motorData, mi, opt)

mr
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Continuous-time linear grey box model defined by @DCMotorODE function:

dx/dt = A x(t) + B u(t) + K e(t)
y(t) = C x(t) + D u(t) + e(b)
A =
x1 X2
x1 0 1
X2 0 -1.119
B =
ul
X1 0
X2 2.447
C =
x1l x2
yl 1 0
y2 0 1
D =
ul
yl 0
y2 0
K =
yl y2
x1 0 0
X2 0 0

Model parameters:
G = 2.187
Tau = 0.8938

Parameterization:
ODE Function: @DCMotorODE
(parameterizes both continuous- and discrete-time equations)
Disturbance component: none
Initial state: “auto”
Number of free coefficients: 2
Use ''getpvec', "getcov" for parameters and their uncertainties.

Status:

Estimated using GREYEST on time domain data "motorData’.
Fit to estimation data: [29.34;3.848]%
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FPE: 6.135e+06, MSE: 4933

We have here told the estimation process that we have some confidence in the initial
parameter values, and believe more in our guess of T than in our guess of G. The
resulting regularized estimate mr considers this information together with the
information in measured data. They are weighed together with the help of Lambda and R.
In Figure 18 it is shown how the resulting model can reproduce the output. Clearly, the
regularized model does a better job than both the initial model (to which the parameters
are "attracted") and the unregularized model.

[ymr, Fitr] = compare(motorData_NoiseFree, mr, copt);
subplot(211)
plot(t, [motorData NoiseFree.y(:,1), ymi.y(:,1), ym.y(:,1), ymr.y(:,1)])
axis tight
ylabel ("Output 1%)
legend({"Noise-free output”, ...
sprintf(" Initial: %2_4g%%",Fiti(1)),.-.
sprintf("Estimated: %2.4g%%",Fit(1)),--.
sprintf("Regularized: %2.4g9%%",Fitr(1))},---
"Location®, "BestOutside™)
subplot(212)
plot(t, [motorData NoiseFree.y(:,2), ymi.y(:,2), ym.y(:,2), ymr.y(:,2)])
ylabel ("Output 2%)
axis tight
legend({"Noise-free output”, ...
sprintf(" Initial: %2_4g%%",Fiti(2)),.-.
sprintf("Estimated: %2.4g%%",Fit(2)),--.
sprintf("Regularized: %2.4g9%%",Fitr(2))},---
"Location®, "BestOutside™)
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Output 1

100

-100

=200

Moise-free output
Initial: 26.59%
Estimated: 85.20%
Regularized: 94.43%

Figure 18: Noise-Free measured output and model outputs for initial, estimated and
regularized models.

The regularized estimation also has reduced parameter variance as compared to the

unregularized estimates. This is shown by tighter confidence bounds on the Bode plot of
mr compare to that of m:

clf

showConfidence(bodeplot(m,mr, logspace(-1,1.4,100)),3) % 3 s.d. region
legend("show™)
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Figure 19: Bode plot of m and mr with confidence bounds

This was an illustration of how the merging prior and measurement information works.
In practice we need a procedure to tune the size of Lambda to the existing information

sources. A commonly used method is to use cross validation. That is:

1-104

Split the data into two parts - the estimation and the validation data

Compute the regularized model using the estimation data for various values of

Lambda

Evaluate how well these models can reproduce the validation data: tabulate NRMSE
fit values delivered by the compare command or the goodnessOfFit command.

Pick that Lambda which gives the model with the best fit to the validation data.
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Amplitude
il

Use of Regularization to Robustify Large Nonlinear Models

Another use of regularization is to numerically stabilize the estimation of large (often
nonlinear) models. We have given a data record nldata that has nonlinear dynamics.
We try nonlinear ARX-model of neural network character, with more and more neurons:

load regularizationExampleData.mat nldata

opt = nlarxOptions("SearchMethod®,"Im");

m1l0 = nlarx(nldata, [1 2 1], sigmoidnet(*NumberOfUnits®,10),0pt);
m20 = nlarx(nldata, [1 2 1], sigmoidnet(*NumberOfUnits~®,20),0pt);
m30 = nlarx(nldata, [1 2 1], sigmoidnet(*NumberOfUnits®,30),0pt);

compare(nldata, m10, m20) % compare responses of ml0, m20 to measured response

Simulated Response Comparison

150 T T T T T T T T T
nidata (y1)
m10: 94.35%
m20: 99.21%
100 ]
50 7
0
-50
_1 DD 1 1 1 1 1 1 1 1 1

100 200 300 400 500 600 700 BOD 900 1000
Time (seconds)
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Figure 20: Comparison plot for models m10 and m20.

fprintf("Number of parameters (m10, m20, m30): %s\n",...

mat2str([nparams(ml1l0),nparams(m20),nparams(m30)]))
compare(nldata, m30, m10, m20) % compare all three models
axis([1 800 -57 45])

Number of parameters (m10, m20, m30): [54 104 154]

Simulated Response Comparison

40 1 nidata (y1)
i ma30: -7 404e+04%
30 . : ' m10: 94.35%
| m20; 99.21%
200
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Figure 21: Comparison plot for models m10, m20 and m30.

The first two models show good and improving fits. But when estimating the 154
parameters of m30, numerical problems seem to occur. We can then apply a small amount
of regularization to get better conditioned matrices:
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opt.Regularization.Lambda = le-8;
m30r = nlarx(nldata, [1 2 1], sigmoidnet("num®,30), opt);

compare(nldata, m30r, m10, m20)

Simulated Response Comparison

15: T T T T T T T T T
nidata (y1)
ma30r: 98.63%
. m10: 84, 35%
100 m20: 99.21%
[k} EL B 1
-
= |
L J—
3= |
E
< 0
-50 .
_1 EU 1 1 1 1 1 1 1 1 1
300 400 500 600 700 800 900 1000

Time (seconds)

Figure 22: Comparison plot for models m10, m20 and regularized model m30r.

The fit to estimation data has significantly improved for the model with 30 neurons. As
discussed before, a systematic search for the Lambda value to use would require cross

validation tests.

Conclusions

We discussed the benefit of regularization for estimation of FIR models, linear grey-box
models and Nonlinear ARX models. Regularization can have significant impact on the
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quality of the identified model provided the regularization constants Lambda and R are
chosen appropriately. For ARX models, this can be done very easily using the arxRegul
function. These automatic choices also feed into the dedicated state-space estimation
algorithm ssregest.

For other types of estimations, you must rely on cross validation based search to
determine Lambda. For structured models such as grey box models, R can be used to
indicate the reliability of the corresponding initial value of the parameter. Then, using
the Nominal regularization option, you can merge the prior knowledge of the parameter
values with the information in the data.

Regularization options are available for all linear and nonlinear models including
transfer functions and process models, state-space and polynomial models, Nonlinear
ARX, Hammerstein-Wiener and linear/nonlinear grey box models.
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“How to Plot Data at the Command Line” on page 2-98

“How to Analyze Data Using the advice Command” on page 2-100

“Select Subsets of Data” on page 2-102
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“Handling Missing Data and Outliers” on page 2-106
“Extract and Model Specific Data Segments” on page 2-109
“Handling Offsets and Trends in Data” on page 2-111
“How to Detrend Data Using the App” on page 2-114

“How to Detrend Data at the Command Line” on page 2-115
“Resampling Data” on page 2-117

“Resampling Data Using the App” on page 2-122
“Resampling Data at the Command Line” on page 2-123
“Filtering Data” on page 2-125

“How to Filter Data Using the App” on page 2-127

“How to Filter Data at the Command Line” on page 2-130
“Generate Data Using Simulation” on page 2-133

“Manipulating Complex-Valued Data” on page 2-139
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Supported Data

System Identification Toolbox software supports estimation of linear models from both
time- and frequency-domain data. For nonlinear models, this toolbox supports only time-
domain data. For more information, see “Supported Models for Time- and Frequency-
Domain Data” on page 1-37.

The data can have single or multiple inputs and outputs, and can be either real or
complex.

Your time-domain data should be sampled at discrete and uniformly spaced time instants
to obtain an input sequence

u={u(D),u@D),...,u(NT)}

and a corresponding output sequence

y=(D),y@2D),...y(NT)}
u(t) and y(t) are the values of the input and output signals at time ¢, respectively.

This toolbox supports modeling both single- or multiple-channel input-output data or
time-series data.

Supported Data Description

Time-domain I/O data One or more input variables u(¢) and one or more
output variables y(?), sampled as a function of time.
Time-domain data can be either real or complex

Time-series data Contains one or more outputs y() and no measured
input. Can be time-domain or frequency-domain
data.

Frequency-domain data Fourier transform of the input and output time-

domain signals. The data is the set of input and
output signals in frequency domain; the frequency
grid need not be uniform.

Frequency-response data Complex frequency-response values for a linear
system characterized by its transfer function G,
measurable directly using a spectrum analyzer.
Also called frequency function data. Represented by
frd or 1dfrd objects. The data sample time may be
zero or nonzero. The frequency vector need not be
uniformly spaced.
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Note: If your data is complex valued, see “Manipulating Complex-Valued Data” on page
2-139 for information about supported operations for complex data.
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Ways to Obtain Identification Data

You can obtain identification data by:

Measuring input and output signals from a physical system.

Your data must capture the important system dynamics, such as dominant time
constants. After measuring the signals, organize the data into variables, as described
in “Representing Data in MATLAB Workspace” on page 2-9. Then, import it in

the System Identification app or represent it as a data object for estimating models at
the command line.

Generating an input signal with desired characteristics, such as a random Gaussian
or binary signal or a sinusoid, using idinput. Then, generate an output signal using
this input to simulate a model with known coefficients. For more information, see
“Generate Data Using Simulation” on page 2-133.

Using input/output data thus generated helps you study the impact of input signal
characteristics and noise on estimation.

Logging signals from Simulink models.

This technique is useful when you want to replace complex components in your model
with identified models to speed up simulations or simplify control design tasks.

For more information on how to log signals, see “Export Signal Data Using Signal
Logging” (Simulink) in the Simulink documentation.
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Ways to Prepare Data for System Identification
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Before you can perform any task in this toolbox, your data must be in the MATLAB
workspace. You can import the data from external data files or manually create
data arrays at the command line. For more information about importing data, see
“Representing Data in MATLAB Workspace” on page 2-9.

The following tasks help to prepare your data for identifying models from data:
Represent data for system identification

You can represent data in the format of this toolbox by doing one of the following:
+  For working in the app, import data into the System Identification app.

See “Represent Data”.

*  For working at the command line, create an iddata or 1dfrd object.

For time-domain or frequency-domain data, see “Representing Time- and Frequency-
Domain Data Using iddata Objects” on page 2-50.

For frequency-response data, see “Representing Frequency-Response Data Using idfrd
Objects” on page 2-83.

* To simulate data with and without noise, see “Generate Data Using Simulation” on
page 2-133.

Analyze data quality
You can analyze your data by doing either of the following:
* Plotting data to examine both time- and frequency-domain behavior.

See “How to Plot Data in the App” on page 2-91 and “How to Plot Data at the
Command Line” on page 2-98.

+ Using the advice command to analyze the data for the presence of constant offsets
and trends, delay, possible feedback, and signal excitation levels.

See “How to Analyze Data Using the advice Command” on page 2-100.
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Preprocess data

Review the data characteristics for any of the following features to determine if there is a
need for preprocessing:

*  Missing or faulty values (also known as outliers). For example, you might see
gaps that indicate missing data, values that do not fit with the rest of the data, or
noninformative values.

See “Handling Missing Data and Outliers” on page 2-106.
+  Offsets and drifts in signal levels (low-frequency disturbances).
See “Handling Offsets and Trends in Data” on page 2-111 for information about

subtracting means and linear trends, and “Filtering Data” on page 2-125 for
information about filtering.

* High-frequency disturbances above the frequency interval of interest for the system
dynamics.

See “Resampling Data” on page 2-117 for information about decimating and
interpolating values, and “Filtering Data” on page 2-125 for information about
filtering.

Select a subset of your data

You can use data selection as a way to clean the data and exclude parts with noisy or
missing information. You can also use data selection to create independent data sets for
estimation and validation.

To learn more about selecting data, see “Select Subsets of Data” on page 2-102.
Combine data from multiple experiments

You can combine data from several experiments into a single data set. The model you
estimate from a data set containing several experiments describes the average system
that represents these experiments.

To learn more about creating multiple-experiment data sets, see “Create
Multiexperiment Data Sets in the App” on page 2-35 or “Create Multiexperiment
Data at the Command Line” on page 2-60.
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Requirements on Data Sampling
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A sample time is the time between successive data samples. It is sometimes also referred
to as sampling time or sample interval.

The System Identification app only supports uniformly sampled data.

The System Identification Toolbox product provides limited support for nonuniformly
sampled data. For more information about specifying uniform and nonuniform time
vectors, see “Constructing an iddata Object for Time-Domain Data” on page 2-50.
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Representing Data in MATLAB Workspace

In this section...

“Time-Domain Data Representation” on page 2-9

“Time-Series Data Representation” on page 2-10

“Frequency-Domain Data Representation” on page 2-11

Time-Domain Data Representation

Time-domain data consists of one or more input variables u(Z) and one or more output
variables y(z), sampled as a function of time. If there is no input variable, see “Time-
Series Data Representation” on page 2-10.

You must organize time-domain input/output data in the following format:

+  For single-input/single-output (SISO) data, the sampled data values must be double
column vectors.

*  For multi-input/multi-output (MIMO) data with N, inputs and N, outputs, and N;
number of data samples (measurements):
* The input data must be an N,-by-N, matrix
* The output data must be an N;-by-INy matrix

To use time-domain data for identification, you must know the sample time. If you are
working with uniformly sampled data, use the actual sample time from your experiment.
Each data value is assigned a time instant, which is calculated from the start time and
sample time. You can work with nonuniformly sampled data only at the command line by
specifying a vector of time instants using the Samplinglnstants property of iddata, as
described in “Constructing an iddata Object for Time-Domain Data” on page 2-50.

For continuous-time models, you must also know the input intersample behavior, such as
zero-order hold and first-order-hold.

For more information about importing data into MATLAB, see “Data Import and Export”
(MATLAB).

After you have the variables in the MATLAB workspace, import them into the System
Identification app or create a data object for working at the command line. For more
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information, see “Import Time-Domain Data into the App” on page 2-16 and
“Representing Time- and Frequency-Domain Data Using iddata Objects” on page
2-50.

Time-Series Data Representation

Time-series data is time-domain or frequency-domain data that consist of one or more
outputs y(¢) with no corresponding input. For more information on how to obtain
identification data, see “Ways to Obtain Identification Data” on page 2-5.

You must organize time-series data in the following format:

* For single-input/single-output (SISO) data, the output data values must be a column
vector.

* For data with N, outputs, the output is an N,-by-N, matrix, where N, is the number of
output data samples (measurements).

To use time-series data for identification, you also need the sample time. If you are
working with uniformly sampled data, use the actual sample time from your experiment.
Each data value is assigned a sample time, which is calculated from the start time and
the sample time. If you are working with nonuniformly sampled data at the command
line, you can specify a vector of time instants using the iddata Samplinglnstants
property, as described in “Constructing an iddata Object for Time-Domain Data” on page
2-50. Note that model estimation cannot be performed using non-uniformly sampled
data.

For more information about importing data into the MATLAB workspace, see “Data
Import and Export” (MATLAB).

After you have the variables in the MATLAB workspace, import them into the System
Identification app or create a data object for working at the command line. For more
information, see “Import Time-Domain Data into the App” on page 2-16 and
“Representing Time- and Frequency-Domain Data Using 1ddata Objects” on page
2-50.

For information about estimating time-series model parameters, see “Time Series
Analysis”.
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Frequency-Domain Data Representation

Frequency-domain data consists of either transformed input and output time-domain
signals or system frequency response sampled as a function of the independent variable
frequency.

* “Frequency-Domain Input/Output Signal Representation” on page 2-11

+ “Frequency-Response Data Representation” on page 2-13

Frequency-Domain Input/Output Signal Representation

* “What Is Frequency-Domain Input/Output Signal?” on page 2-11
+ “How to Represent Frequency-Domain Data in MATLAB” on page 2-12

What Is Frequency-Domain Input/Output Signal?

Frequency-domain data is the Fourier transform of the input and output time-domain
signals. For continuous-time signals, the Fourier transform over the entire time axis is
defined as follows:

mezjmeWWt

—o0

U@M=Ju®fmﬂt

—oo

In the context of numerical computations, continuous equations are replaced by their
discretized equivalents to handle discrete data values. For a discrete-time system with a

sample time 7, the frequency-domain output Y(e™) and input U(e™) is the time-discrete
Fourier transform (TDFT):

. N .
Y(ele) — TZ y(kT)e—lwkT
k=1

In this example, kK = 1,2, ...,N, where N is the number of samples in the sequence.

Note: This form only discretizes the time. The frequency is continuous.
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In practice, the Fourier transform cannot be handled for all continuous frequencies

and you must specify a finite number of frequencies. The discrete Fourier transform
(DFT) of time-domain data for N equally spaced frequencies between 0 and the sampling
frequency 2/ N is:

. N .
Y(elw”T) — z y(kT)e—lw,,kT
k=1

w, =2 p-012,. N-1
T

The DFT is useful because it can be calculated very efficiently using the fast Fourier
transform (FFT) method. Fourier transforms of the input and output data are complex
numbers.

For more information on how to obtain identification data, see “Ways to Obtain
Identification Data” on page 2-5.

How to Represent Frequency-Domain Data in MATLAB
You must organize frequency-domain data in the following format:
* Input and output

+  For single-input/single-output (SISO) data:

The input data must be a column vector containing the values u(eWkT)

The output data must be a column vector containing the values y(eiwkT)

k=1, 2, ..., N, where N;is the number of frequencies.

For multi-input/multi-output data with IV, inputs, IVy outputs and N; frequency
measurements:

* The input data must be an Ny-by-N, matrix
* The output data must be an Ng-by-N, matrix

*  Frequencies

*  Must be a column vector.
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For more information about importing data into the MATLAB workspace, see “Data
Import and Export” (MATLAB).

After you have the variables in the MATLAB workspace, import them into the System
Identification app or create a data object for working at the command line. For more
information, see “Importing Frequency-Domain Input/Output Signals into the App” on
page 2-19 and “Representing Time- and Frequency-Domain Data Using iddata
Objects” on page 2-50.

Frequency-Response Data Representation

+ “What Is Frequency-Response Data?” on page 2-13
+ “How to Represent Frequency-Response Data in MATLAB” on page 2-14

What Is Frequency-Response Data?

Frequency-response data, also called frequency-function data, consists of complex
frequency-response values for a linear system characterized by its transfer function G.
Frequency-response data tells you how the system handles sinusoidal inputs. You can
measure frequency-response data values directly using a spectrum analyzer, for example,
which provides a compact representation of the input-output relationship (compared to
storing input and output independently).

The transfer function G is an operator that takes the input « of a linear system to the
output y:

y=Gu

For a continuous-time system, the transfer function relates the Laplace transforms of the
input U(s) and output Y(s):

Y (s)=G(s)U(s)

In this case, the frequency function G(iw) is the transfer function evaluated on the
imaginary axis s=iw.

For a discrete-time system sampled with a time interval T, the transfer function relates
the Z-transforms of the input U(z) and output Y(z):

Y(z2)=G(RU(z)
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"T) is the transfer function G(z) evaluated on the
iwT
)

In this case, the frequency function G(e

unit circle. The argument of the frequency function G(e'"") is scaled by the sample time T

to make the frequency function periodic with the sampling frequency 2%, .

When the input to the system is a sinusoid of a specific frequency, the output is also
a sinusoid with the same frequency. The amplitude of the output is |G| times the

amplitude of the input. The phase of the shifted from the input by ¢ = argG . G is

evaluated at the frequency of the input sinusoid.

Frequency-response data represents a (nonparametric) model of the relationship between
the input and the outputs as a function of frequency. You might use such a model, which
consists of a table or plot of values, to study the system frequency response. However,
this model is not suitable for simulation and prediction. You should create parametric
model from the frequency-response data.

For more information on how to obtain identification data, see “Ways to Obtain
Identification Data” on page 2-5.

How to Represent Frequency-Response Data in MATLAB
You can represent frequency-response data in two ways:

Complex-values G(e'®) , for given frequencies @

Amplitude |G| and phase shift ¢ = argG values

You can import both the formats directly in the System Identification app. At the
command line, you must represent complex data using an frd or 1dfrd object. If the
data is in amplitude and phase format, convert it to complex frequency-response vector

using h(®) = A(@)e®@.

You must organize frequency-response data in the following format:

Frequency-Response  |For Single-Input Single-Output (SISO) |For Multi-Input Multi-Output (MIMO) Data

Data Representation  |Data

Complex Values * Frequency function must bea |+ Frequency function must be an Ny-
column vector. by-N,-by-N; array, where N, is the
- Frequency values must be a number of inputs, Ny is the number

2-14
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Frequency-Response
Data Representation

For Single-Input Single-Output (SISO)
Data

For Multi-Input Multi-Output (MIMO) Data

of outputs, and N;is the number of
frequency measurements.

*  Frequency values must be a column
vector.

Amplitude and phase
shift values

Amplitude and phase must
each be a column vector.

*  Frequency values must be a
column vector.

* Amplitude and phase must each be
an Ny-by-N,-by-N; array, where N,
is the number of inputs, N, is the
number of outputs, and N;is the
number of frequency measurements.

*  Frequency values must be a column
vector.

For more information about importing data into the MATLAB workspace, see “Data
Import and Export” (MATLAB).

After you have the variables in the MATLAB workspace, import them into the System
Identification app or create a data object for working at the command line. For more
information about importing data into the app, see “Importing Frequency-Response
Data into the App” on page 2-21. To learn more about creating a data object, see
“Representing Frequency-Response Data Using idfrd Objects” on page 2-83.
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Import Time-Domain Data into the App
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Before you can import time-domain data into the System Identification app, you
must import the data into the MATLAB workspace, as described in “Time-Domain Data
Representation” on page 2-9.

Note: Your time-domain data must be sampled at equal time intervals. The input and
output signals must have the same number of data samples.

To import data into the app:

1

Type the following command in the MATLAB Command Window to open the app:

systemldentification

In the System Identification app window, select Import data > Time domain data.
This action opens the Import Data dialog box.

Import data -

Time domain data...
Freqg. domain data...
Data object...
Example. ..

Specify the following options:

Note: For time series, only import the output signal and enter [] for the input.

* Input — Enter the MATLAB variable name (column vector or matrix) or a
MATLAB expression that represents the input data. The expression must
evaluate to a column vector or matrix.

*  Output — Enter the MATLAB variable name (column vector or matrix) or a
MATLAB expression that represents the output data. The expression must
evaluate to a column vector or matrix.

+ Data name — Enter the name of the data set, which appears in the System
Identification app window after the import operation is completed.
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Starting time — Enter the starting value of the time axis for time plots.

Sample time — Enter the actual sample time in the experiment. For more
information about this setting, see “Specifying the Data Sample Time” on page
2-28.

Tip: The System Identification Toolbox product uses the sample time during
model estimation and to set the horizontal axis on time plots. If you transform
a time-domain signal to a frequency-domain signal, the Fourier transforms are
computed as discrete Fourier transforms (DFTs) using this sample time.

(Optional) In the Data Information area, click More to expand the dialog box and
enter the following settings:

Input Properties

InterSample — This options specifies the behavior of the input signals between
samples during data acquisition. It is used when transforming models from
discrete-time to continuous-time and when resampling the data.

* zoh (zero-order hold) indicates that the input was piecewise-constant during
data acquisition.

+ foh (first-order hold) indicates that the output was piecewise-linear during
data acquisition.

* bl (bandwidth-limited behavior) specifies that the continuous-time input
signal has zero power above the Nyquist frequency (equal to the inverse of the
sample time).

Note: See the d2c and c2d reference pages for more information about
transforming between discrete-time and continuous-time models.

Period — Enter Inf to specify a nonperiodic input. If the underlying time-
domain data was periodic over an integer number of periods, enter the period of
the input signal.

Note: If your data is periodic, always include a whole number of periods for model
estimation.

Channel Names
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* Input — Enter the name of one or more input channels.

Tip: Naming channels helps you to identify data in plots. For multivariable
input-output signals, you can specify the names of individual Input and Output
channels, separated by commas.

Output — Enter the name of one or more output channels.

Physical Units of Variables

* Input — Enter the input units.

Tip: When you have multiple inputs and outputs, enter a comma-separated list of
Input and Output units corresponding to each channel.

*  OQOutput — Enter the output units.

Notes — Enter comments about the experiment or the data. For example, you might
enter the experiment name, date, and a description of experimental conditions.
Models you estimate from this data inherit your data notes.

Click Import. This action adds a new data icon to the System Identification app
window.

Click Close to close the Import Data dialog box.
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Import Frequency-Domain Data into the App

In this section...

“Importing Frequency-Domain Input/Output Signals into the App” on page 2-19
“Importing Frequency-Response Data into the App” on page 2-21

Importing Frequency-Domain Input/Output Signals into the App

Frequency-domain data consists of Fourier transforms of time-domain data (a function of
frequency).

Before you can import frequency-domain data into the System Identification app, you
must import the data into the MATLAB workspace, as described in “Frequency-Domain
Input/Output Signal Representation” on page 2-11.

Note: The input and output signals must have the same number of data samples.

To import data into the app:
1  Type the following command in the MATLAB Command Window to open the app:

systemldentification

2 In the System Identification app window, select Import data > Freq. domain
data. This action opens the Import Data dialog box.

3  Specify the following options:

* Input — Enter the MATLAB variable name (column vector or matrix) or a
MATLAB expression that represents the input data. The expression must
evaluate to a column vector or matrix.

Output — Enter the MATLAB variable name (column vector or matrix) or a
MATLAB expression that represents the output data. The expression must
evaluate to a column vector or matrix.

Frequency — Enter the MATLAB variable name of a vector or a MATLAB
expression that represents the frequencies. The expression must evaluate to a
column vector.
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The frequency vector must have the same number of rows as the input and
output signals.

Data name — Enter the name of the data set, which appears in the System
Identification app window after the import operation is completed.

Frequency unit — Enter Hz for Hertz or keep the rad/s default value.

Sample time — Enter the actual sample time in the experiment. For continuous-
time data, enter 0. For more information about this setting, see “Specifying the
Data Sample Time” on page 2-28.

(Optional) In the Data Information area, click More to expand the dialog box and
enter the following optional settings:

Input Properties

InterSample — This options specifies the behavior of the input signals between
samples during data acquisition. It is used when transforming models from
discrete-time to continuous-time and when resampling the data.

+ zoh (zero-order hold) indicates that the input was piecewise-constant during
data acquisition.

+ foh (first-order hold) indicates that the output was piecewise-linear during
data acquisition.

* bl (bandwidth-limited behavior) specifies that the continuous-time input
signal has zero power above the Nyquist frequency (equal to the inverse of the
sample time).

Note: See the d2c and c2d reference page for more information about
transforming between discrete-time and continuous-time models.

Period — Enter InT to specify a nonperiodic input. If the underlying time-
domain data was periodic over an integer number of periods, enter the period of
the input signal.

Note: If your data is periodic, always include a whole number of periods for model
estimation.

Channel Names
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* Input — Enter the name of one or more input channels.

Tip: Naming channels helps you to identify data in plots. For multivariable input
and output signals, you can specify the names of individual Input and Output
channels, separated by commas.

Output — Enter the name of one or more output channels.

Physical Units of Variables

Input — Enter the input units.

Tip: When you have multiple inputs and outputs, enter a comma-separated list of
Input and Output units corresponding to each channel.

*  Output — Enter the output units.

Notes — Enter comments about the experiment or the data. For example, you might
enter the experiment name, date, and a description of experimental conditions.
Models you estimate from this data inherit your data notes.

5 Click Import. This action adds a new data icon to the System Identification app
window.

6  Click Close to close the Import Data dialog box.

Importing Frequency-Response Data into the App

+  “Prerequisite” on page 2-21
* “Importing Complex-Valued Frequency-Response Data” on page 2-22
* “Importing Amplitude and Phase Frequency-Response Data” on page 2-23

Prerequisite
Before you can import frequency-response data into the System Identification app, you

must import the data into the MATLAB workspace, as described in “Frequency-Response
Data Representation” on page 2-13.
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Importing Complex-Valued Frequency-Response Data

To import frequency-response data consisting of complex-valued frequency values at
specified frequencies:

1

Type the following command in the MATLAB Command Window to open the app:

systemldentification

In the System Identification app window, select Import data > Freq. domain
data. This action opens the Import Data dialog box.

In the Data Format for Signals list, select Freq. Function (Complex).

Specify the following options:

Response — Enter the MATLAB variable name or a MATLAB expression that
represents the complex frequency-response data G(eiw).
Frequency — Enter the MATLAB variable name of a vector or a MATLAB

expression that represents the frequencies. The expression must evaluate to a
column vector.

Data name — Enter the name of the data set, which appears in the System
Identification app window after the import operation is completed.

Frequency unit — Enter Hz for Hertz or keep the rad/s default value.

Sample time — Enter the actual sample time in the experiment. For continuous-
time data, enter 0. For more information about this setting, see “Specifying the
Data Sample Time” on page 2-28.

(Optional) In the Data Information area, click More to expand the dialog box and
enter the following optional settings:

Channel Names

Input — Enter the name of one or more input channels.

Tip: Naming channels helps you to identify data in plots. For multivariable input
and output signals, you can specify the names of individual Input and Output
channels, separated by commas.

Output — Enter the name of one or more output channels.

Physical Units of Variables
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6

7

* Input — Enter the input units.

Tip: When you have multiple inputs and outputs, enter a comma-separated list of
Input and Output units corresponding to each channel.

Output — Enter the output units.

Notes — Enter comments about the experiment or the data. For example, you might
enter the experiment name, date, and a description of experimental conditions.
Models you estimate from this data inherit your data notes.

Click Import. This action adds a new data icon to the System Identification app
window.

Click Close to close the Import Data dialog box.

Importing Amplitude and Phase Frequency-Response Data

To import frequency-response data consisting of amplitude and phase values at specified
frequencies:

1

Type the following command in the MATLAB Command Window to open the app:

systemldentification

In the System Identification app window, select Import data > Freq. domain
data. This action opens the Import Data dialog box.

In the Data Format for Signals list, select Freq. Function (Amp/Phase).
Specify the following options:

* Amplitude — Enter the MATLAB variable name or a MATLAB expression that

represents the amplitude |G.

* Phase (deg) — Enter the MATLAB variable name or a MATLAB expression that
represents the phase ¢ =argQG .
Frequency — Enter the MATLAB variable name of a vector or a MATLAB

expression that represents the frequencies. The expression must evaluate to a
column vector.

+ Data name — Enter the name of the data set, which appears in the System
Identification app window after the import operation is completed.

* Frequency unit — Enter Hz for Hertz or keep the rad/s default value.
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6

+ Sample time — Enter the actual sample time in the experiment. For continuous-
time data, enter 0. For more information about this setting, see “Specifying the
Data Sample Time” on page 2-28.

(Optional) In the Data Information area, click More to expand the dialog box and
enter the following optional settings:

Channel Names

Input — Enter the name of one or more input channels.

Tip: Naming channels helps you to identify data in plots. For multivariable input
and output signals, you can specify the names of individual Input and Output
channels, separated by commas.

*  Output — Enter the name of one or more output channels.
Physical Units of Variables

* Input — Enter the input units.

Tip: When you have multiple inputs and outputs, enter a comma-separated list of
Input and Output units corresponding to each channel.

*  Output — Enter the output units.

Notes — Enter comments about the experiment or the data. For example, you might
enter the experiment name, date, and a description of experimental conditions.
Models you estimate from this data inherit your data notes.

Click Import. This action adds a new data icon to the System Identification app
window.

7 Click Close to close the Import Data dialog box.
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Import Data Objects into the App

You can import the System Identification Toolbox 1ddata and idfrd data objects into
the System Identification app.

Before you can import a data object into the System Identification app, you must create
the data object in the MATLAB workspace, as described in “Representing Time- and
Frequency-Domain Data Using 1ddata Objects” on page 2-50 or “Representing
Frequency-Response Data Using idfrd Objects” on page 2-83.

Note: You can also import a Control System Toolbox Frd object. Importing an frd object
converts it to an 1dfrd object.

Select Import data > Data object to open the Import Data dialog box.
Import iddata, idfrd, or frd data object in the MATLAB workspace.
To import a data object into the app:

1 Type the following command in the MATLAB Command Window to open the app:

systemldentification

2 Inthe System Identification app window, select Import data > Data object.

Import data -

Import data
Time domain data...
Freq. domain data...

Data object...

Example. ..

This action opens the Import Data dialog box. IDDATA or IDFRD/FRD is already
selected in the Data Format for Signals list.

3  Specify the following options:

+ Object — Enter the name of the MATLAB variable that represents the data
object in the MATLAB workspace. Press Enter.
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Data name — Enter the name of the data set, which appears in the System
Identification app window after the import operation is completed.

(Only for time-domain iddata object) Starting time — Enter the starting value
of the time axis for time plots.

(Only for frequency domain iddata or idfrd object) Frequency unit — Enter
the frequency unit for response plots.

Sample time — Enter the actual sample time in the experiment. For more
information about this setting, see “Specifying the Data Sample Time” on page
2-28.

Tip: The System Identification Toolbox product uses the sample time during
model estimation and to set the horizontal axis on time plots. If you transform
a time-domain signal to a frequency-domain signal, the Fourier transforms are
computed as discrete Fourier transforms (DFTs) using this sample time.

4  (Optional) In the Data Information area, click More to expand the dialog box and
enter the following optional settings:

(Only for iddata object) Input Properties

InterSample — This options specifies the behavior of the input signals between
samples during data acquisition. It is used when transforming models from
discrete-time to continuous-time and when resampling the data.

+ zoh (zero-order hold) indicates that the input was piecewise-constant during
data acquisition.

+ Foh (first-order hold) indicates that the input was piecewise-linear during
data acquisition.

* bl (bandwidth-limited behavior) specifies that the continuous-time input
signal has zero power above the Nyquist frequency (equal to the inverse of the
sample time).

Note: See the d2c and c2d reference page for more information about
transforming between discrete-time and continuous-time models.

Period — Enter InT to specify a nonperiodic input. If the underlying time-
domain data was periodic over an integer number of periods, enter the period of
the input signal.
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Note: If your data is periodic, always include a whole number of periods for model
estimation.

Channel Names

Input — Enter the name of one or more input channels.

Tip: Naming channels helps you to identify data in plots. For multivariable input
and output signals, you can specify the names of individual Input and Output
channels, separated by commas.

*  Output — Enter the name of one or more output channels.

Physical Units of Variables

Input — Enter the input units.

Tip: When you have multiple inputs and outputs, enter a comma-separated list of
Input and Output units corresponding to each channel.

*  Output — Enter the output units.

Notes — Enter comments about the experiment or the data. For example, you might
enter the experiment name, date, and a description of experimental conditions.
Models you estimate from this data inherit your data notes.

Click Import. This action adds a new data icon to the System Identification app
window.

Click Close to close the Import Data dialog box.
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Specifying the Data Sample Time

When you import data into the app, you must specify the data sample time.

The sample time is the time between successive data samples in your experiment and
must be the numerical time interval at which your data is sampled in any units. For
example, enter 0.5 if your data was sampled every 0.5 s, and enter 1 if your data was
sampled every 1 s.

You can also use the sample time as a flag to specify continuous-time data. When
importing continuous-time frequency domain or frequency-response data, set the
Sample time to O.

The sample time is used during model estimation. For time-domain data, the sample
time is used together with the start time to calculate the sampling time instants. When
you transform time-domain signals to frequency-domain signals (see the FFft reference
page), the Fourier transforms are computed as discrete Fourier transforms (DFTs) for
this sample time. In addition, the sampling instants are used to set the horizontal axis on
time plots.
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-

& Import Dats E=mEE
Data Format for Signals
IDDATA or IDFRIVFRD -
Workspace Variable
Object:
Type:
Data Information
Data name: mydata
Starting time: 1
Sample time: 1
More |
[ Import ] [ Reset ]
[ Close ] [ Help ]

Sample Time in the Import Data dialog box

2-29



2 Data Import and Processing

Specify Estimation and Validation Data in the App

You should use different data sets to estimate and validate your model for best validation
results.

In the System Identification app, Working Data refers to estimation data. Similarly,
Validation Data refers to the data set you use to validate a model. For example, when
you plot the model output, the input to the model is the input signal from the validation
data set. This plot compares model output to the measured output in the validation data
set. Selecting Model resids performs residual analysis using the validation data.

To specify Working Data, drag and drop the corresponding data icon into the Working
Data rectangle, as shown in the following figure. Similarly, to specify Validation
Data, drag and drop the corresponding data icon into the Validation Data rectangle.
Alternatively, right-click the icon to open the Data/model Info dialog box. Select the Use
as Working Data or Use as Validation Data and click Apply to specify estimation
and validation data, respectively.
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Drag and drop estimation data set

A

fem -
B System Identification - Untjtfed
File Options Window/ Help
Import data ‘ Import models ¥,
JL Opkrations Ji

M <— Preprodess v

data 4

data_est || data_val A
=
y data_est
Working Data
Estimate — il
Data Views To To Model Views
[¥] Time plot Workspace | (LTI Viewer Mode! output Transient resp | Nonlinear ARX
D Data spectra _ Model resids Frequency resp Hamm-Wiener
D Freguency functpn Zeros and poles
ta_val
— Noise spectrum
et Validation Data b
idation data changed to data_val.

Drag and drop validation data set

More About
. “Select Subsets of Data” on page 2-102
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Preprocess Data Using Quick Start

2-32

As a preprocessing shortcut for time-domain data, select Preprocess > Quick start to
simultaneously perform the following four actions:

Subtract the mean value from each channel.

Note: For information about when to subtract mean values from the data, see
“